Korsholmsvensson6996

Z Iurium Wiki

Verze z 19. 10. 2024, 19:06, kterou vytvořil Korsholmsvensson6996 (diskuse | příspěvky) (Založena nová stránka s textem „The addition of alkaline and magnesium sources during the recovery of NH4+ and PO43- in the form of struvite using the traditional struvite precipitation m…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The addition of alkaline and magnesium sources during the recovery of NH4+ and PO43- in the form of struvite using the traditional struvite precipitation method increases the production cost. To solve this problem, a magnesium-air cell (MAC) system was used herein to recover NH4+ and PO43- as struvite from wastewater using a magnesium strip (Mg2+) and the oxygen adsorbed on the surface of a titanium plate (OH-) as the anode and cathode, respectively. Experimental parameters (i.e. initial solution pH, temperature, NH4+/PO43- molar ratio, NH4+ and PO43- initial concentrations and stirring intensity) were found to affect the removal rate of NH4+ and PO43-. The presence of Ca2+ decreased the struvite purity. At Ca2+/PO43- ratios of 01 and 0.51, the purity of the obtained struvite after 6 h was 93.8% and 58.9%, respectively. Struvite with a purity of 95.7%, electricity with an average output power of 2.53 mW, and an energy density of 1.05 W/m2 were obtained when the proposed system was used to recover NH4+ and PO43- from an actual supernatant of domestic sludge anaerobic digestion. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analyses showed that the obtained struvite exhibited almost the same physicochemical properties as commercial struvite. Y-27632 solubility dmso Thus, the MAC system can be regarded as an effective method for recovering NH4+ and PO43- in the form of struvite from wastewater.Vertical flow constructed wetlands (VFCWs) have been widely applied worldwide due to their small footprint and large hydraulic load, however, its sustainable operation and application is still challenging because of the unsatisfactory nitrogen removal. This study developed a novel CW coupled with a magnetic field for treating simulated wastewater, and investigated the effects of magnetic field on enhancing treatment performance and responses of wetland plants and microbial community. The results showed that the magnetic field (average 110 mT) had a significantly intensifying effect on organics and nitrogen removal. The removal efficiencies of NH4+-N and TN in CW exposed to magnetic field (MF-CW) were 10.14% and 9.16% higher than those in control CW (C-CW), and an increased COD removal was also found in MF-CW. Biochemical characteristics of plants indicated that the MF did not cause a severe stress for wetland plants, while MF application shifted significantly the microbial community in CWs. Relative abundances of nitrifying bacteria such as Nitrospira (2.36%), Dokdonella (0.27%) and Nitrosomonas (0.17%) had been significantly promoted due to MF exposure, and nitrification-related microbial enzyme (AMO) activity was also increased by 63%. It can be concluded that introducing MF into CWs could intensify organics and nitrogen removal via the biological process, which would contribute to a better understanding of magnetic coupling mechanism.This study investigated the concentrations of polycyclic aromatic compounds (PACs), including parent polyaromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives, in 48 sediment samples from the intertidal region of sandy beaches in Baía de Todos os Santos (BTS), Salvador, State of Bahia, Brazil. The total PAH (∑PAH) concentration, total nitro-PAH (∑nitro-PAH) concentration, and total oxy-PAH (∑oxy-PAH) concentration ranged from 2.11 μg g-1 dry weight (dw) to 28.0 μg g-1 dw, 2.58 μg g-1 dw to 30.2 μg g-1 dw, and 0.34 μg g-1 dw to 3.65 μg g-1 dw, respectively. Elevated concentrations of parent PAHs and nitro-PAHs were found in samples from two sites in BTS, which were also characterized by high percentages of fine-medium sand and low organic matter contents. Potent mutagenic 3-nitrobenzanthrone (3-NBA) was found in 86% of the samples at concentrations ranging from 0.200 μg g-1 dw to 0.690 μg g-1 dw. Furthermore, calculations of the benzo[a]pyrene toxicity equivalency (BaPTEQ) indicated that three carcinogenic high-molecular-weight PAHs accounted for 98.7% of the total maximum PAH concentration. Finally, we assessed the possible environmental risks posed to benthic species living in the sediments of BTS. link2 The results showed that the risk quotient for PAHs (RQPAHs) was ≥1. In turn, the summed RQ for all PACs (∑RQmixture) ranged from 1 to 30, but did not exceed the maximum allowable threshold; thus, the risks posed to benthic species were moderate for all sediment samples.Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. link3 Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.Mercuric Hg2+ ion forms strong complexes with dissolved organic matter (DOM) in natural waters. The complexation of Hg2+ by sulfhydryl groups of DOM was regarded as the main mechanism for Hg2+-DOM interactions, particularly in anoxic sulfur and DOM-rich environments. In the present study, the influences of pH and sulfide addition on the molecular structure of Hg2+-DOM complexes and the characteristics of Hg2+ binding to DOM were investigated using FT-IR and synchronous fluorescence two-dimensional correlation spectroscopic analysis. Results showed that, during the Hg2+ binding process, the aromatic hydrogen CH in humic acids (HA) gave the fastest responses to pH perturbation and the S-reacted HA (S-HA) exhibited different reaction patterns from the unreacted HA. In S-HA, the esters/alcohols CO and carboxyl CO gave the fastest responses to Hg2+ binding. In the process of S-HA binding to Hg2+, the protein-like fractions including proteins, amino acids or monoaromatics played the leading role. Sulfide addition of HA enhanced the reactivity of small molecular weight compounds with low aromaticity and improved the binding ability of protein-like fractions to Hg2+. These findings provide a better understanding of the interaction mechanisms between Hg2+ and DOM at a molecular level and have important environmental implications in Hg2+ biogeochemical transformation, transport and cycling.Repurposing drugs is a promising strategy to identify therapeutic interventions against novel and re-emerging viruses. Posaconazole is an antifungal drug used to treat invasive aspergillosis and candidiasis. Recently, posaconazole and its structural analog, itraconazole were shown to inhibit replication of multiple viruses by modifying intracellular cholesterol homeostasis. Here, we show that posaconazole inhibits replication of the alphaviruses Semliki Forest virus (SFV), Sindbis virus and chikungunya virus with EC50 values ranging from 1.4 μM to 9.5 μM. Posaconazole treatment led to a significant reduction of virus entry in an assay using a temperature-sensitive SFV mutant, but time-of-addition and RNA transfection assays indicated that posaconazole also inhibits post-entry stages of the viral replication cycle. Virus replication in the presence of posaconazole was partially rescued by the addition of exogenous cholesterol. A transferrin uptake assay revealed that posaconazole considerably slowed down cellular endocytosis. A single point mutation in the SFV E2 glycoprotein, H255R, provided partial resistance to posaconazole as well as to methyl-β-cyclodextrin, corroborating the effect of posaconazole on cholesterol and viral entry. Our results indicate that posaconazole inhibits multiple steps of the alphavirus replication cycle and broaden the spectrum of viruses that can be targeted in vitro by posaconazole, which could be further explored as a therapeutic agent against emerging viruses.The polycyclic aromatic hydrocarbons (PAHs) that enter the aqueous phase usually coexist with fulvic acid (FA). Therefore, we initiated this investigation to explore the influences of FA on bacterial biofilm formation and its potential to biodegrade pyrene (PYR), using electron microscopic techniques and isobaric tags for relative and absolute quantification (iTRAQ). Our results revealed that FA stimulated biofilm formation and enhanced the biodegradation of PYR. First, FA favored the three-dimensional proliferation of bacteria, with an OD590/OD600 value of up to 14.78, and the extracellular surfaces covered by a layer of biomaterials. Distinctive intracellular morphologies of texture and organization were accompanied by reduced inter-bacterial distances of less than 0.31 μm. The biofilms formed displayed interactions between FA and surficial proteins, as noted by band shifts for the C-O and CO groups. Strikingly, FA triggered the upregulation of 130 proteins that were either operational in biofilm formation or in metabolic adjustments; with the changes supported by the increasing intensity of free amino acids and the newly generated N-O bonds. The results above revealed that the enhanced biodegradation was related to the up-regulation of the proteins functioned for ribosomal and carbon metabolism, and the ultra-structural changes in FA-induced biofilm system.Although biochar supports were widely adopted to fabricate the biochar (BC) supported layered double hydroxides (LDHs) composites (LDH-BC) for efficient environmental remediation, few studies focus on the important role of biochar support in alleviating the stacking of LDHs and enhancing LDH-BC's performance. Through the analysis of the material structure-performance relationship, the "support effect" of fine biochar prepared by ball milling was carefully explored. Compared with the original LDHs on LDH-BC, the LDHs on ball milled biochar (LDH-BMBC) had smaller particle size (from 1123 nm to 586 nm), crystallite size (from 20.5 nm to 6.56 nm), more abundant O-containing functional groups, and larger surface area (370 m2 g-1) and porous structure. The Langmuir model revealed that the maximum theoretical phosphate adsorption capacity of LDH-BMBC (56.2 mg P g-1) was significantly higher than that of LDH-BC (27.6 mg P g-1). The leaching experiment proved that the addition of LDH-BMBC in calcareous soil could significantly reduce the release of soil total phosphate (46.

Autoři článku: Korsholmsvensson6996 (Cahill Womble)