Kendallhays9527

Z Iurium Wiki

Verze z 19. 10. 2024, 15:38, kterou vytvořil Kendallhays9527 (diskuse | příspěvky) (Založena nová stránka s textem „Mast cells (MCs) are an important immune cell type in the skin and play an active role during wound healing. MCs produce mediators that can enhance acute i…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Mast cells (MCs) are an important immune cell type in the skin and play an active role during wound healing. MCs produce mediators that can enhance acute inflammation, stimulate re-epithelialisation as well as angiogenesis, and promote skin scarring. There is also a link between MCs and abnormal pathological cutaneous scarring, with increased numbers of MCs found in hypertrophic scars and keloid disease. However, there has been conflicting data regarding the specific role of MCs in scar formation in both animal and human studies. Whilst animal studies have proved to be valuable in studying the MC phenomenon in wound healing, the appropriate translation of these findings to cutaneous wound healing and scar formation in human subjects remains crucial to elucidate the role of these cells and target treatment effectively. Therefore, this perspective paper will focus on evaluation of the current evidence for the role of MCs in skin scarring in both animals and humans in order to identify common themes and future areas for translational research.Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.Paracoccidioidomycosis (PCM) is an important endemic, systemic disease in Latin America caused by Paracoccidioides spp. selleck This mycosis has been associated with high morbidity and sequels, and its clinical manifestations depend on the virulence of the infecting strain, the degree and type of immune response, infected tissues, and intrinsic characteristics of the host. The T helper(Th)1 and Th17/Th22 cells are related to resistance and control of infection, and a Th2/Th9 response is associated with disease susceptibility. In this study, we focused on interleukin(IL)-12p35 (IL12A), IL-18 (IL18), and IFN-γ receptor 1 (IFNGR1) genetic polymorphisms because their respective roles have been described in human PCM. Real-time PCR was employed to analyze IL12A-504 G/T (rs2243115), IL18-607 C/A (rs1946518), and IFNGR1-611 A/G (rs1327474) single nucleotide polymorphisms (SNP). One hundred forty-nine patients with the acute form (AF), multifocal chronic (MC), or unifocal chronic (UC) forms of PCM and 110 non-PCM individuals as a control group were included. In the unconditional logistic regression analysis adjusted by ethnicity and sex, we observed a high risk of the IL18-607 A-allele for both AF [p = 0.015; OR = 3.10 (95% CI 1.24-7.77)] and MC groups [p = 0.023; OR = 2.61 (95% CI 1.14-5.96)] when compared with UC. The IL18-607 A-allele associated risk for the AF and MC groups as well as the protective role of the C-allele in UC are possibly linked to higher levels of IL-18 at different periods of the course of the disease. Therefore, a novel role of IL18-607 C/A SNP is shown in the present study, highlighting its importance in the outcome of PCM.We generated an NOD/Shi-scid-IL2Rγ null (NOG) mouse deficient for the Fcer1g and Fcgr2b genes (NOG-FcγR-/- mice), in which monocytes/macrophages do not express activating (FcγRI, III, and IV) or inhibitory (FcγRIIB) Fcγ receptors. Antibody-dependent cellular cytotoxicity (ADCC) by innate immune cells was strongly reduced in this strain. Thus, while the growth of xenogeneic human tumors engrafted in conventional NOG mice was suppressed by innate cells upon specific antibody treatment, such growth inhibition was abrogated in NOG-FcγR-/- mice. Using this novel strain, we further produced NOG-FcγR-/--mice expressing human IL-15 (NOG-FcγR-/--hIL-15 Tg). The mice inherited unique features from each strain, i.e., the long-term sustenance of human natural killer (NK) cells, and the elimination of mouse innate cell-mediated ADCC. As a result, segregation of human NK cell-mediated ADCC from mouse cell-mediated ADCC was possible in the NOG-FcγR-/--hIL-15 Tg mice. Our results suggest that NOG-FcγR-/--hIL-15 Tg mice are useful for validating the in vivo function of antibody drug candidates.Despite intensive antimicrobial and anti-inflammatory therapies, cystic fibrosis (CF) patients are subjected to chronic infections due to opportunistic pathogens, including multidrug resistant (MDR) Pseudomonas aeruginosa. Macrophages from CF patients show many evidences of reduced phagocytosis in terms of internalization capability, phagosome maturation, and intracellular bacterial killing. In this study, we investigated if apoptotic body-like liposomes (ABLs) loaded with phosphatidylinositol 5-phosphate (PI5P), known to regulate actin dynamics and vesicular trafficking, could restore phagocytic machinery while limiting inflammatory response in in vitro and in vivo models of MDR P. aeruginosa infection. Our results show that the in vitro treatment with ABL carrying PI5P (ABL/PI5P) enhances bacterial uptake, ROS production, phagosome acidification, and intracellular bacterial killing in human monocyte-derived macrophages (MDMs) with pharmacologically inhibited cystic fibrosis transmembrane conductance regulator channel (CFTR), and improve uptake and intracellular killing of MDR P.

Autoři článku: Kendallhays9527 (Moss Riggs)