Benjaminkrog2994

Z Iurium Wiki

Verze z 19. 10. 2024, 15:36, kterou vytvořil Benjaminkrog2994 (diskuse | příspěvky) (Založena nová stránka s textem „Herein, cobalt-involved redox in a magnetically responsive drug-loaded nanocatalyst (PTX/Co-Lips@Fe3O4) was used to convert Fe(iii) to Fe(ii) for enhancing…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Herein, cobalt-involved redox in a magnetically responsive drug-loaded nanocatalyst (PTX/Co-Lips@Fe3O4) was used to convert Fe(iii) to Fe(ii) for enhancing tumor ferrotherapy for the first time. Moreover, this work highlighted an "all in one" strategy (1) targeting, chemotherapy, and ferrotherapy in one nanomedicine, and (2) a decrease in GSH quantity, increase in the quantity of efficient catalytic ions, and use of a magnetic field, all in one tumor ferrotherapy enhancement approach.In this work, we report the fabrication of continuous transparent and flexible supercapacitors by depositing a CNT network onto a polymer electrolyte membrane directly from an aerogel of ultra-long CNTs produced floating in the gas phase. The supercapacitors show a combination of a power density of 1370 kW kg-1 at high transmittance (ca. 70%), and high electrochemical stability during extended cycling (>94% capacitance retention over 20 000 cycles) and against repeated 180° flexural deformation. They represent a significant enhancement of 1-3 orders of magnitude compared to prior state-of-the-art transparent supercapacitors based on graphene, CNTs, and rGO. These features mainly arise from the exceptionally long length of CNTs, which makes the material behave as a bulk conductor instead of an aspect ratio-limited percolating network, even for electrodes with >90% transparency. The electrical and capacitive figures-of-merit for the transparent conductor are FoMe = 2.7, and FoMc = 0.46 F S-1 cm-2 respectively.Cancer-derived extracellular vesicles (EVs) have attracted considerable attention for clinical diagnosis. However, a limiting factor in current EV assays is the ability to detect various EV cancer biomarkers expressed at different locations. Here, we report a biomimetic multifunctional nanoplatform for multilayer imaging of cancer biomarkers from the EV surface to the interior without complex pretreatment. Constructed from polydopamine-wrapped gold nanoparticles modified with multiple functional molecules, this nanoplatform can capture EVs from complex samples and target different EV cancer biomarkers for imaging analysis at the single-vesicle level. Combined with 96-well plates, this assay can distinguish cancer cell-derived EVs from normal ones in a high-throughput manner. Using serum samples, EVs from hepatocellular carcinoma (HCC) patients can be distinguished from healthy controls. This convenient workflow represents a promising tool for EV-based cancer diagnosis.Lanthanide-doped upconversion nanoparticles (UCNPs) are promising bioimaging agents that emit light under near infra-red excitation, capable of penetrating deep in biotissues with a high signal-to-noise ratio. Their successful implementation is principally associated with surface functionalization. Here, we report on UCNP surface modification with highly hydrophilic, endogenous, non-toxic, non-immunogenic colominic acid, conferring "stealth" properties. We proposed surface functionalization of UCNPs based on a two-step strategy, which consists of hydrophilization with polyethyleneimine and attachment of colominic acid by electrostatic or covalent bond formation. Analysis revealed that regardless of the nature of the bond, colominic acid acted as a non-cytotoxic UCNP surface coating with low nonspecific blood protein adsorption. UCNP-colominic acid nanocomplexes exhibited low uptake by macrophages in vitro, which plays an active role in inflammatory reactions. We demonstrated the superiority of colominic acid compared to polyethylene glycol coating in terms of the prolonged circulation time in the bloodstream of small animals when injected intravenously. The colominic acid coating made it possible to prolong the UCNP circulation time up to 3 h. This led to the efficient UCNP accumulation in the inflammation site due to microvascular remodeling, accompanied by an enhanced uptake and retention effect. UCNP-assisted imaging of inflammation in the whole-body mode as well as local visualization of blood vessels were acquired in vivo. These collective findings validate the functional significance of UCNP decoration with colominic acid for their application in bioimaging.Ag+ plays an important role in DNA mismatch technology due to its affinity for cytosine in DNA. selleck chemical This article introduces a strategy to control the enzyme digesting reaction by utilizing the characteristics of C-Ag+-C mismatches, effectively regulating and controlling the activity of the E6 DNAzyme via changing the structure of its conservative domain. We designed a series of basic logic gates, a "Yes" Gate, an "Or" Gate and an "Inhibit" Gate. Cysteine (Cys) can combine with Ag+, reducing the concentration of Ag+ in solution, thus restraining the C-Ag+-C mismatch effect. Based on this principle, we regard Cys as a threshold, and designed a type of "Inhibit" Gate based on input quantity by changing the concentration of Ag+, thus generating different statues of logic output. On this basis, the E6 DNAzyme and Ag10c DNAzyme can be integrated into new systems with the function of logic operation circuit based on the control of Ag+ concentration in solution. This system could represent three different states of logical expression by controlling the quantity of Ag+ and Cys.In this work, copper(ii)-containing metal-organic xerogels (Cu-MOXs), which were composed of copper as the central ion and 2,2'-bipyridine-6,6'-dicarboxylic acid as the ligand, were quickly synthesized by a mild facile strategy. The Cu-MOXs exhibited superior catalytic performance for the luminol-H2O2 chemiluminescence (CL) system. The possible mechanism was studied via CL spectra, UV-Vis absorption and electron paramagnetic resonance (ESR). Since dopamine (DA) can inhibit the reaction of this system, a sensitive paper-based CL device for the detection of DA was established. Under the optimal experimental conditions, the linear range of this method was 40-200 nM with a detection limit of 10 nM. The proposed method was used for the determination of DA in urine samples.Hepatocellular carcinoma (HCC) is a severe malignant disease threatening human life. Current chemotherapy methods usually result in poor prognosis with low treatment efficacy and high side effects because of weak targeting specificity and fast acquisition of multidrug resistance (MDR). HCSP4 is a 12-aa peptide previously identified to specifically and sensitively bind to HCC cells and tissues. In this study, a novel class of HCC-targeting doxorubicin (DOX) delivery system, named HCSP4-Lipo-DOX-miR101, was synthesized and investigated for anticancer activity. HCSP4-Lipo-DOX-miR101 exhibited specific HCC targeting characteristics and satisfactory anticancer potency against HepG2 and HepG2/ADR cells, particularly HepG2/ADR cells. Moreover, the expression levels of genes closely related to membrane transport and cancer growth were significantly suppressed. This finding suggests that HCSP4-Lipo-DOX-miR101 can cause DOX-resistant HCC cell death and growth inhibition based on the targeting of MDR-related genes by miR-101.

Autoři článku: Benjaminkrog2994 (Padilla Sommer)