Sheehanwillis6834

Z Iurium Wiki

Verze z 19. 10. 2024, 14:26, kterou vytvořil Sheehanwillis6834 (diskuse | příspěvky) (Založena nová stránka s textem „This paper describes the plant-mediated preparation of silver nanoparticles with aqueous extract and infusion of Cistus incanus leaves. To evaluate aqueous…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper describes the plant-mediated preparation of silver nanoparticles with aqueous extract and infusion of Cistus incanus leaves. To evaluate aqueous extract and infusion antioxidant capacity and total phenolic content the DPPH and Folin-Ciocalteau methods were utilized. The antioxidant capacity and total phenolic content of extract and infusion were equal to 85.97 ± 6.54 mg gallic acid equivalents per gram of dry weight.; 10.76 ± 0.59 mg/mL and 12.65 ± 1.04 mg gallic acid equivalents per gram of dry weight.; 3.10 ± 0.14 mg/mL, respectively. The formed nanoparticles displayed the characteristic absorption band in the 380-450 nm wavelength range. The average size of particles was in the 68.8-71.2 nm range. Morphology and phase composition analysis revealed the formation of spherical nanoparticles with a face-centred cubic structure. Immune compatibility tests of nanoparticles and plant extracts showed no activation of the THP1-XBlue™ monocyte. Cytotoxicity tests performed with L929 mice fibroblasts showed that nanoparticles should be utilized at a concentration of 16 ppm. The minimum inhibitory concentrations determined with the microdilution method for nanoparticles prepared with plant infusion for S. aureus and S. epidermidis were 2 ppm and 16 ppm, respectively.The crystal stacking order plays a crucial role in determining the structure and physical properties of 2D layered materials. A variation in the stacking sequence of adjacent 2D building blocks causes drastic changes in their functionalities. In this work, the structural variation of belloite (Cu(OH)Cl), as a function of pressure, is presented. Through in situ synchrotron X-ray diffraction and Raman scattering studies, in combination with first-principles theoretical simulations, a structural transformation from the initial monoclinic phase into an orthorhombic one has been established at 18.7 GPa, featuring variations in the stacking sequence of the tectonic monolayers. In the monoclinic phase, they are arranged in an AAAA sequence. While in the orthorhombic phase, the monolayers are stacked in an ABAB sequence. Such phenomena are similar to those observed in van der Waals 2D materials, with pressure-induced changes in the stacking order between layers. In addition, an isostructural phase transition within the initial monoclinic phase is also observed to occur at 12.9-16 GPa, which is associated with layer-sliding and a change in hydrogen bond configuration. These results show that Cu(OH)Cl, as well as other hydrogen-bonded 2D layered materials, can provide a convenient platform for studying the effects of the crystal stacking order.The possibility of using geopolymer instead of Portland cement could effectively reduce carbon dioxide emissions from cement manufacturing. Fibre-reinforced self-compacting geopolymers have great potential in civil engineering applications, such as chord member grouting for concrete-filled steel tubular truss beams. However, to the best of the authors' knowledge, the quantitative relationship between FF and the properties of the fibre-reinforced geopolymer has been rarely reported. In this research, 26 groups of mixtures were used to study the influence of the polypropylene fibre factor (FF) on the flowability and mechanical properties and also the compactness of the fibre-reinforced self-compacting geopolymer. At the same volume fraction, geopolymers with long fibres present worse flowability than those having short fibres due to the easier contacting of long fibres. By growing the FF the influence of fibre addition on the V-funnel flow rate is more significant than the slump spread. This can be ascribed to tive way to basically obtain ideal mechanical properties.Friction stir processing (FSP) technology has received reasonable attention in the past two decades to process a wide range of materials such as aluminum, magnesium, titanium, steel, and superalloys. Due to its thermomechanical processing nature, FSP is used to alter grain structure and enhance mechanical and corrosion behavior in a wide range of steels. The refinement in grains and phase transformations achieved in steel after FSP affects hardness, tensile properties, fracture toughness, fatigue crack propagation rate, wear resistance, and corrosion resistance. A number of review papers are available on friction stir welding (FSW) or FSP of nonferrous alloys. In this article, a comprehensive literature review on the FSP/FSW of different types of steels is summarized. Specifically, the influence of friction stir processing parameters such as advancing speed, rotational speed, tool material, etc., on steels' performance is discussed along with assessment methodologies and recommendations.Zinc plant residue (ZPR) is a secondary material generated during hydrometallurgical zinc production that contains considerable contents of valuable elements such as Zn, Cu, Fe, Pb, Cd, Ag, In, Ga, Tl. Zinc, copper and accompanying elements in ZPR are in different minerals, mainly in the ferrites. A promising approach for recycling ZPR is the sulfating roasting using iron sulfates followed by water leaching. In this study, the composition of ZPR and the obtained products were thoroughly investigated by various methods including X-ray diffraction analysis (XRD), chemical phase analysis and Mössbauer spectroscopy. The effect of temperature, amount of iron sulfates and roasting time on the conversion of valuable metals into a water-soluble form was thermodynamically and experimentally studied both using pure ferrites and ZPR. Based on the results of time-resolved XRD analysis and synchronous thermal analysis (STA), a mechanism of the sulfation roasting was elucidated. Torin1 The rate-controlling step of zinc and copper sulfation process during the ZPR roasting was estimated. The sulfating roasting at 600 °C during 180 min with the optimal Fe2(SO4)3∙9H2O addition followed by water leaching enables to recover 99% Zn and 80.3% Cu, while Fe, Pb, Ag, In, Ga retained almost fully in the residue.Gadolinia (Gd2O3) is potentially attractive as a dispersive phase for copper matrix composites due to its excellent thermodynamic stability. In this paper, a series of 1.5 vol% nano-Gd2O3/Cu composites were prepared via an internal oxidation method followed by powder metallurgy in the temperature range of 1123-1223 K with a holding time of 5-60 min. The effects of processing parameters on the microstructure and properties of the composites were analyzed. The results showed that the tensile strength and conductivity of the nano-Gd2O3/Cu composite have a strong link with the microporosity and grain size, while the microstructure of the composite was determined by the sintering temperature and holding time. The optimal sintering temperature and holding time for the composite were 1173 K and 30 min, respectively, under which a maximum ultimate tensile strength of 317 MPa was obtained, and the conductivity was 96.8% IACS. Transmission electron microscopy observations indicated that nano-Gd2O3 particles with a mean size of 76 nm formed a semi-coherent interface with the copper matrix. In the nano-Gd2O3/Cu composite, grain-boundary strengthening, Orowan strengthening, thermal mismatch strengthening, and load transfer strengthening mechanisms occurred simultaneously.Tea tree extract, containing antioxidant constituents α-terpineol, terpinen-4-ol, and α-terpinene, has a wide range of applications in the cosmetic, food, and pharmaceutical industries. link2 In this study, tea tree extract showed an anticorrosive effect under 1 M HCl solution on mild steel (MS) and 304 stainless steel (STS). Uniform corrosion for MS and pitting corrosion for STS at 298 K were retarded, with inhibition efficiencies of 77% and 86%, respectively. The inhibition of uniform and pitting corrosion was confirmed by scanning electron microscopy and laser scanning confocal microscopy in terms of surface roughness and pitting morphologies. The most effective constituent contributing to the inhibitory performance of tea tree extract was revealed to be α-terpineol, with an inhibition efficiency of 83%. The adsorption of tea tree extract was confirmed by surface characterization analysis using Fourier transform infrared spectroscopy, Raman spectroscopy, and Electrochemical impedance spectroscopy. Interestingly, G- and D-peaks of Raman spectra were detected from the inhibited steels, and this finding is the first example in the corrosion inhibition field. The anticorrosion mechanism can be explained by the formation of organic-Fe complexes on the corroded steel surface via electron donor and acceptor interactions in the presence of an oxygen atom of the hydroxyl group or ether of organic inhibitors.(computer-aided design-computer-aided manufacturing) CAD/CAM monolithic restorations connected to zirconia abutments manufactured with a chairside workflow are becoming a more common restorative option. However, their mechanical performance is still uncertain. The aim of this study was to evaluate the mechanical behavior of a combination of a zirconia abutment and monolithic all-ceramic zirconia and lithium disilicate crown manufactured with a chairside workflow, connected to titanium implants with two types of internal connection-tube in tube connection and conical connection with platform switching. They were thermally cycled from 5 °C to 55 °C and were subjected to a static and fatigue test following ISO 14801. The fractured specimens from the fatigue test were examined by SEM (scanning electron microscopy). Simulations of the stress distribution over the different parts of the restorative complex during the mechanical tests were evaluated by means of (finite element analysis) FEA. The mechanical performance of the zirconia abutment with an internal conical connection was higher than that of the tube in tube connection. Additionally, the use of disilicate or zirconia all-ceramic chairside CAD/CAM monolithic restorations has similar results in terms of mechanical fracture and fatigue resistance. Stress distribution affects the implant/restoration complex depending on the connection design. Zirconia abutments and monolithic restorations seem to be highly reliable in terms of mechanical resistance.This paper studies the evolution of the microstructure and microhardness in the G115 side of the G115/Sanicro25 dissimilar steel welded joint during the creep process. The joints were subjected to creep tests at 675 °C, 140 MPa, 120 MPa and 100 MPa. A scanning electron microscope equipped with an electron backscattering diffraction camera was used to observe the microstructure of the cross-section. The fracture position of the joint and the relationship between the cavity and the second phase were analyzed. The microstructure morphology of the fracture, the base metal and the thread end was compared and the composition and size of the Laves phase were statistically analyzed. link3 The results show that the fracture locations are all located in the fine-grain heat-affected zone (FGHAZ) zone, and the microstructure near the fracture is tempered martensite. There are two kinds of cavity in the fracture section. Small cavities sprout adjacent to the Laves phase; while large cavities occupy the entire prior austenite grain, there are more precipitated phases around the cavities.

Autoři článku: Sheehanwillis6834 (Roman Montoya)