Cookgeertsen5578

Z Iurium Wiki

Verze z 18. 10. 2024, 23:50, kterou vytvořil Cookgeertsen5578 (diskuse | příspěvky) (Založena nová stránka s textem „The suggested receive diversity combining techniques can provide significant system performance improvement if compared to the performance of each individu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The suggested receive diversity combining techniques can provide significant system performance improvement if compared to the performance of each individual receiving site. In addition, the probability of system outages is decreased even if one or more sites experience severe impairment consequences. Simulation results showed that the bit error rate (BER) of the combined stream is lower than the BER of the best quality receiving site if considered alone. Moreover, virtual ground stations with cooperative omnidirectional reception at geographically separated receivers also allow data to be received from multiple satellites in the same frequency band simultaneously, as software-defined receivers can digitize a wider portion of the frequency band. This can be a significant conceptual advantage as the number of small satellites transmitting data grows, and it is reasonable to avoid the corresponding necessary increase in the number of fully equipped ground stations with rotators.M/EEG resting-state analysis often requires the definition of the epoch length and the criteria in order to select which epochs to include in the subsequent steps. However, the effects of epoch selection remain scarcely investigated and the procedure used to (visually) inspect, label, and remove bad epochs is often not documented, thereby hindering the reproducibility of the reported results. In this study, we present Scorepochs, a simple and freely available tool for the automatic scoring of resting-state M/EEG epochs that aims to provide an objective method to aid M/EEG experts during the epoch selection procedure. We tested our approach on a freely available EEG dataset containing recordings from 109 subjects using the BCI2000 64 channel system.Named entity recognition (NER) is a task that seeks to recognize entities in raw texts and is a precondition for a series of downstream NLP tasks. Traditionally, prior NER models use the sequence labeling mechanism which requires label dependency captured by the conditional random fields (CRFs). However, these models are prone to cascade label misclassifications since a misclassified label results in incorrect label dependency, and so some following labels may also be misclassified. To address the above issue, we propose S-NER, a span-based NER model. To be specific, S-NER first splits raw texts into text spans and regards them as candidate entities; it then directly obtains the types of spans by conducting entity type classifications on span semantic representations, which eliminates the requirement for label dependency. Moreover, S-NER has a concise neural architecture in which it directly uses BERT as its encoder and a feed-forward network as its decoder. We evaluate S-NER on several benchmark datasets across three domains. Experimental results demonstrate that S-NER consistently outperforms the strongest baselines in terms of F1-score. Extensive analyses further confirm the efficacy of S-NER.The goal of this paper is to design a broadband acoustic camera using micro-electromechanical system (MEMS) microphones. The paper describes how an optimization of the microphone array has been carried out. Furthermore, the final goal of the described optimization is that the gain in the desired direction and the attenuation of side lobes is maximized at a frequency up to 4 kHz. Throughout the research, various shapes of microphone arrays and their directivity patterns have been considered and analyzed using newly developed algorithms implemented in Matlab. A hemisphere algorithm, genetic algorithm, and genetic square algorithm were used to find the optimal position and number of microphones placed on an acoustic camera. The proposed acoustic camera design uses a large number of microphones for high directional selectivity, while a field programmable gate array system on a chip (FPGA SoC) is selected as the processing element of the system. According to the obtained results, three different acoustic camera prototypes were developed. This paper presents simulations of their characteristics, compares the obtained measurements, and discusses the positive and negative sides of each acoustic camera prototype.For the issue of low accuracy and poor real-time performance of insulator and defect detection by an unmanned aerial vehicle (UAV) in the process of power inspection, an insulator detection model MobileNet_CenterNet was proposed in this study. First, the lightweight network MobileNet V1 was used to replace the feature extraction network Resnet-50 of the original model, aiming to ensure the detection accuracy of the model while speeding up its detection speed. Second, a spatial and channel attention mechanism convolutional block attention module (CBAM) was introduced in CenterNet, aiming to improve the prediction accuracy of small target insulator position information. Then, three transposed convolution modules were added for upsampling, aiming to better restore the semantic information and position information of the image. Finally, the insulator dataset (ID) constructed by ourselves and the public dataset (CPLID) were used for model training and validation, aiming to improve the generalization ability of the model. The experimental results showed that compared with the CenterNet model, MobileNet_CenterNet improved the detection accuracy by 12.2%, the inference speed by 1.1 f/s for FPS-CPU and 4.9 f/s for FPS-GPU, and the model size was reduced by 37 MB. Compared with other models, our proposed model improved both detection accuracy and inference speed, indicating that the MobileNet_CenterNet model had better real-time performance and robustness.The academic and professional community has recently started to develop the concept of 6G networks. The scientists have defined key performance indicators and pursued large-scale automation, ambient sensing intelligence, and pervasive artificial intelligence. They put great efforts into implementing new network access and edge computing solutions. However, further progress depends on developing a more flexible core infrastructure according to more complex QoS requirements. Our research aims to provide 5G/6G core flexibility by customizing and optimizing network slices and introducing a higher level of programmability. We bind similar services in a group, manage them as a single slice, and enable a higher level of programmability as a prerequisite for dynamic QoS. The current 5G solutions primarily use predefined queues, so we have developed highly flexible, dynamic queue management software and moved it entirely to the application layer (reducing dependence on the physical network infrastructure). Further, we have emulated a testbed environment as realistically as possible to verify the proposed model capabilities. Obtained results confirm the validity of the proposed dynamic QoS management model for configuring queues' parameters according to the service management requirements. Moreover, the proposed solution can also be applied efficiently to 5G core networks to resolve complex service requirements.Industrial process tomography offers two key advantages over conventional sensing systems. Firstly, process tomography systems provide information about 2D or 3D distributions of the variables of interest. Secondly, tomography looks inside the processes without penetrating them physically, i.e., sensing is possible despite harsh process conditions, and the operation of the process is not disturbed by intrusive sensors. These advantages open new perspectives for the field of process control, and the potential of closed-loop control applications is one of the main driving forces behind the development of industrial tomography. Despite these advantages and decades of development, closed-loop control applications of tomography are still not really common. This article provides an overview of the current state-of-the-art in the field of control systems with tomographic sensors. An attempt is made to classify the different control approaches, critically assess their strengths and weak points, and outline which directions may lead to increased future utilization of industrial tomography in the closed-loop feedback control.The capacitive pressure sensor based on thin film elastic deflection and a parallel plate capacitor uses a non-conductive elastic annular thin film centrally connected to a conductive, rigid, flat, concentric-circular thin plate as a pressure sensing unit. On application of pressure, the non-conductive thin film deflects elastically, which in turn moves the conductive thin plate (as a movable upper electrode plate of the parallel plate capacitor) towards the lower electrode plate, resulting in a change in the capacitance of the capacitor. Therefore, the applied pressure can be determined by measuring the capacitance change, based on the closed-form solution for the elastic behavior of the annular thin film under pressure. Such capacitive pressure sensors are more suitable for large-sized sensors such as those used for building-facade wind pressure measurements, etc. In this paper, a further theoretical study of such capacitive pressure sensors is presented. The newly presented, more refined closed-form solution can greatly reduce the output pressure error under the same input capacitance, in comparison with the previously presented closed-form solution. A numerical example of how to use the resulting closed-form solution to numerically calibrate input-output characteristics is given for the first time. The variation trend of pressure operation ranges and input-output characteristics with important parametric variations, which can be used for guiding the design of such capacitive pressure sensors, is investigated.Ocean temperature monitoring is of great significance to marine fishing, aquaculture, and marine operations. Traditional electric sensors lack the potential to multiplex several sensors, and may suffer from electromagnetic interference. Meanwhile, fiber Bragg grating-based sensors have the advantages of high sensitivity, possibility for large-scale multiplexing, and immunity to electromagnetic interference. In this paper, we propose a Fabry-Pérot (FP) interferometer based on the draw tower grating array and combine it with the phase measurement method for demonstration and testing. In the sensor system, two adjacent fiber Bragg gratings (FBGs) are used as mirrors and an optical fiber connects them, forming a sensor unit. The signal was detected through the compensation of the optical path difference via two-arm path differences in an unbalanced interferometer. The sensor is calibrated in the range of 36.00-36.50 °C, and back to 36.00 °C, in steps of 0.10 °C. A thermocouple (DW1222) is used as a reference. Experimental testing demonstrates that under the thermal loop, the temperature and phase can be approximated as a linear relationship, the Pearson square correlation coefficient is 0.9996, and the temperature sensitivity is -9846 rad/°C. To prove that our experimental device can achieve a higher temperature resolution, we measured the background noise of the system. https://www.selleckchem.com/products/CP-690550.html The experimental results indicate that the order of magnitude of our system temperature resolution can reach 10-5 °C. Thus, we believe that the sensor system is promising for the application of ocean temperature detection, and owing to the ultraweak reflection characteristics of the FBG, this method provides the possibility for large-scale multiplexing of the system.

Autoři článku: Cookgeertsen5578 (Fleming Daugherty)