Zamorakofod0101

Z Iurium Wiki

Verze z 18. 10. 2024, 23:36, kterou vytvořil Zamorakofod0101 (diskuse | příspěvky) (Založena nová stránka s textem „The mean follow-up period was 21 months. The mean VAS significantly decreased at postoperative 1-week and 1-year follow-up. There were no intraoperative or…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The mean follow-up period was 21 months. The mean VAS significantly decreased at postoperative 1-week and 1-year follow-up. There were no intraoperative or early postoperative complications. The median MSTS score during the final follow-up was 26 points (range, 14-28 points). Except for one case who experienced severe joint destruction, all the other five cases were classified as excellent or good (>15).

With precise tumor resection and reconstruction with sandwich procedure, the joint-sparing surgery can be performed in selected patients with metastatic periacetabular tumors.

With precise tumor resection and reconstruction with sandwich procedure, the joint-sparing surgery can be performed in selected patients with metastatic periacetabular tumors.

To investigate the long-term treatment outcomes of early stage bulky cervical cancer treated with definite chemoradiotherapy (CCRT) using intensity-modulated radiotherapy (IMRT) followed by intracavity brachytherapy (ICRT) and the impact of histologic subtype on survival.

From 2004 to 2016, 126 patients with FIGO stage IB2-IIB bulky (≥4cm) cervical cancer treated with CCRT followed by ICRT were retrospectively reviewed. Long-term treatment-related acute/late toxicities and treatment outcomes including overall survival (OS), locoregional recurrence-free survival (LRRFS), and distant metastasis-free survival (DMFS) were reported. Different histologic subtype between squamous cell carcinoma (SCC) and adenocarcinoma/adenosquamous carcinoma (AC/ASC)) of uterine cervix were also compared.

Median follow-up time for alive patients was 117 months. The 5-year OS, LRRFS and DMFS were 75.3%, 87.8% and 75.6%, respectively. The most common≥grade 3 acute toxicity was hematologic toxicity (41.3%). The rates of ≥ grade ed insufficient for AC/ASC of uterine cervix.In systems with frustration, the critical slowing down of the dynamics severely impedes the numerical study of phase transitions for even the simplest of lattice models. In order to help sidestep the gelation-like sluggishness, a clearer understanding of the underlying physics is needed. Here, we first obtain generic insight into that phenomenon by studying one-dimensional and Bethe lattice versions of a schematic frustrated model, the axial next-nearest neighbor Ising (ANNNI) model. Based on these findings, we formulate two cluster algorithms that speed up the simulations of the ANNNI model on a 2D square lattice. Although these schemes do not eliminate the critical slowing own, speed-ups of factors up to 40 are achieved in some regimes.Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems. Of particular importance are polarization effects of the electrode/electrolyte interface, which are difficult to simulate accurately. Here, we show how these electrostatic interactions are taken into account in the framework of the Ewald summation method. We discuss, in particular, the formal setup for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect to the more common case of periodic boundary conditions in three dimensions. These formal developments are implemented and tested in MetalWalls, a molecular dynamics software that captures the polarization of the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite electrode.The ability to simulate electrochemical reactions from first-principles has advanced significantly in recent years. Here, we discuss the atomistic interpretation of electrochemistry at three scales from the electronic structure to elementary processes to constant-potential reactions. At each scale, we highlight the importance of the grand-canonical nature of the process and show that the grand-canonical energy is the natural thermodynamic state variable, which has the additional benefit of simplifying calculations. We show that atomic forces are the derivative of the grand-potential energy when the potential is fixed. We further examine the meaning of potential at the atomic scale and its link to the chemical potential and discuss the link between charge transfer and potential in several situations.We implemented a screening algorithm for one-electron-three-center overlap integrals over contracted Gaussian-type orbitals into the Q-Chem program package. The respective bounds were derived using shell-bounding Gaussians and the Obara-Saika recurrence relations. Using integral screening, we reduced the computational scaling of the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) model in terms of calculation time and memory usage to a linear relationship with the tesserae used to discretize the surface area. Further code improvements allowed for additional performance boosts. C59 purchase To demonstrate the algorithm's better performance, we calculated the compressibility of fullerenes up to C180, where we were originally limited to C40 due to the high RAM usage of GOSTSHYP.We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence.Establishing the structure-property relationship is an important goal of glassy materials, but it is usually impeded by their disordered structure and non-equilibrium nature. Recent studies have illustrated that secondary (β) relaxation is closely correlated with several properties in a range of glassy materials. However, it has been challenging to identify the pertinent structural features that govern it. In this work, we show that the so-called polyamorphous transition in metallic glasses offers an opportunity to distinguish the structural length scale of β relaxation. We find that, while the glass transition temperature and medium-range orders (MROs) change rapidly across the polyamorphous transition, the intensity of β relaxation and the short-range orders (SROs) evolve in a way similar to those in an ordinary reference glass without polyamorphous transition. Our findings suggest that the MRO accounts mainly for the global stiffening of the materials and the glass transition, while the SRO contributes more to β relaxation per se.Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule. Using an example of the negatively charged silica-like system in an aqueous polar environment represented by a two-site water model, we demonstrate that cDFT can reproduce MD data at a fraction of the computational cost. An important implication of this result is the ability to understand how the solvent molecular features may affect the system's properties at the macroscopic scale. A concrete example highlighted in this work is the analysis of nanoparticle interactions with sizes of up to 100 nm in diameter.We determine the zero-frequency charge current noise in a metal-molecule-metal junction embedded in a thermal environment, e.g., a solvent, dominated by sequential charge transmission described by a classical master equation, and we study the dependence of specific model parameters, i.e., the environmental reorganization energy and relaxation behavior. Interestingly, the classical current noise term has the same structure as its quantum analog, which reflects a charge correlation due to the bridging molecule. We further determine the thermodynamic uncertainty relation (TUR) defininig a bound on the relationship between the average charge current, its fluctuation, and the entropy production in an electrochemical junction in the Marcus regime. In the second part, we use the same methodology to calculate the current noise and the TUR for a protoype photovoltaic cell in order to predict its upper bound for the efficiency of energy conversion into useful work.This article presents a new reactive potential in the ReaxFF formalism. It aims to include the chlorine element and opens up the fields of use of ReaxFF to the whole class of organochloride compounds including conjugated or aromatic groups. Numerous compounds in this family raise global awareness due to their environmental impact, and such a reactive potential will help investigate their degradation pathways. The new force field, named CHONCl-2022_weak, belongs to the aqueous branch. The force field parameters were fitted against high-level quantum chemistry calculations, including complete active space self-consistent field/NEVPT2 calculations and density functional theory calculations, and their accuracy was evaluated using a validation set. The root means square deviation against quantum mechanics energies is 0.38 eV (8.91 kcal mol-1). From a structural point of view, the root means square deviation is about 0.06 Å for the bond lengths, 11.86° for the angles, and 4.12° for the dihedral angles. With CHONCl-2022_weak new force field, we successfully investigated the regioselectivity for nucleophilic or electrophilic attacks on polychlorinated biphenyls, which are toxic and permanent pollutants. The rotation barriers along the bond linking the two benzene rings, which is crucial in the toxicity of these compounds, are well reproduced by CHONCl-2022_weak. Then, our new reactive potential is used to investigate the chlorobenzene reactivity in the presence of hydroxyl radicals in atmospheric condition or in aqueous solution. The reaction pathways computed with ReaxFF agree with the quantum mechanics results. We showed that, in the presence of dioxygen molecules, in atmospheric condition, the oxidation of chlorobenzene likely leads to the formation of highly oxygenated compounds after the abstraction of hydrogen radicals. In water, the addition of a hydroxyl radical leads to the formation of chlorophenol or phenol molecules, as already predicted from plasma-induced degradation experiments.

Autoři článku: Zamorakofod0101 (McKinley Rush)