Watkinsvelez9911

Z Iurium Wiki

Verze z 18. 10. 2024, 23:33, kterou vytvořil Watkinsvelez9911 (diskuse | příspěvky) (Založena nová stránka s textem „The Kalman Filter gives a satisfying result for short term estimation, but not so good performance for long term forecasting. Overall, the analysis, plots,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Kalman Filter gives a satisfying result for short term estimation, but not so good performance for long term forecasting. Overall, the analysis, plots, inferences and forecast are satisfying and can help a lot in fighting the spread of the virus.Computer-aided diagnosis (CAD) methods such as Chest X-rays (CXR)-based method is one of the cheapest alternative options to diagnose the early stage of COVID-19 disease compared to other alternatives such as Polymerase Chain Reaction (PCR), Computed Tomography (CT) scan, and so on. To this end, there have been few works proposed to diagnose COVID-19 by using CXR-based methods. However, they have limited performance as they ignore the spatial relationships between the region of interests (ROIs) in CXR images, which could identify the likely regions of COVID-19's effect in the human lungs. In this paper, we propose a novel attention-based deep learning model using the attention module with VGG-16. By using the attention module, we capture the spatial relationship between the ROIs in CXR images. In the meantime, by using an appropriate convolution layer (4th pooling layer) of the VGG-16 model in addition to the attention module, we design a novel deep learning model to perform fine-tuning in the classification process. To evaluate the performance of our method, we conduct extensive experiments by using three COVID-19 CXR image datasets. The experiment and analysis demonstrate the stable and promising performance of our proposed method compared to the state-of-the-art methods. The promising classification performance of our proposed method indicates that it is suitable for CXR image classification in COVID-19 diagnosis.The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have designed networks and applied a single CT image to perform classification; however, this approach ignores prior information such as the patient's clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists. Therefore, we designed a network that considers both CT image information and existing clinical symptom information and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones. The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.COVID-19 is a global pandemic declared by WHO. This pandemic requires the execution of planned control strategies, incorporating quarantine, self-isolation, and tracing of asymptomatic cases. Mathematical modeling is one of the prominent techniques for predicting and controlling the spread of COVID-19. The predictions of earlier proposed epidemiological models (e.g. SIR, SEIR, SIRD, SEIRD, etc.) are not much accurate due to lack of consideration for transmission of the epidemic during the latent period. Moreover, it is important to classify infected individuals to control this pandemic. Therefore, a new mathematical model is proposed to incorporate infected individuals based on whether they have symptoms or not. This model forecasts the number of cases more accurately, which may help in better planning of control strategies. The model consists of eight compartments susceptible (S), exposed (E), infected (I), asymptomatic (A), quarantined (Q), recovered (R), deaths (D), and insusceptible (T), accumulatively named as SEIAQRDT. This model is employed to predict the pandemic results for India and its majorly affected states. The estimated number of cases using the SEIAQRDT model is compared with SIRD, SEIR, and LSTM models. The relative error square analysis is used to verify the accuracy of the proposed model. The simulation is done on real datasets and results show the effectiveness of the proposed approach. These results may help the government and individuals to make the planning in this pandemic situation.Finding an optimal solution for emerging cyber physical systems (CPS) for better efficiency and robustness is one of the major issues. Meta-heuristic is emerging as a promising field of study for solving various optimization problems applicable to different CPS systems. In this paper, we propose a new meta-heuristic algorithm based on Multiverse Theory, named MVA, that can solve NP-hard optimization problems such as non-linear and multi-level programming problems as well as applied optimization problems for CPS systems. MVA algorithm inspires the creation of the next population to be very close to the solution of initial population, which mimics the nature of parallel worlds in multiverse theory. Additionally, MVA distributes the solutions in the feasible region similarly to the nature of big bangs. To illustrate the effectiveness of the proposed algorithm, a set of test problems is implemented and measured in terms of feasibility, efficiency of their solutions and the number of iterations taken in finding the optimum solution. Numerical results obtained from extensive simulations have shown that the proposed algorithm outperforms the state-of-the-art approaches while solving the optimization problems with large feasible regions.With the outbreak of COVID-19, medical imaging such as computed tomography (CT) based diagnosis is proved to be an effective way to fight against the rapid spread of the virus. Merestinib solubility dmso Therefore, it is important to study computerized models for infectious detection based on CT imaging. New deep learning-based approaches are developed for CT assisted diagnosis of COVID-19. However, most of the current studies are based on a small size dataset of COVID-19 CT images as there are less publicly available datasets for patient privacy reasons. As a result, the performance of deep learning-based detection models needs to be improved based on a small size dataset. In this paper, a stacked autoencoder detector model is proposed to greatly improve the performance of the detection models such as precision rate and recall rate. Firstly, four autoencoders are constructed as the first four layers of the whole stacked autoencoder detector model being developed to extract better features of CT images. Secondly, the four autoencoders are cascaded together and connected to the dense layer and the softmax classifier to constitute the model. Finally, a new classification loss function is constructed by superimposing reconstruction loss to enhance the detection accuracy of the model. The experiment results show that our model is performed well on a small size COVID-2019 CT image dataset. link2 Our model achieves the average accuracy, precision, recall, and F1-score rate of 94.7%, 96.54%, 94.1%, and 94.8%, respectively. The results reflect the ability of our model in discriminating COVID-19 images which might help radiologists in the diagnosis of suspected COVID-19 patients.In this study, an attempt has been made to differentiate Novel Coronavirus-2019 (COVID-19) conditions from healthy subjects in Chest radiographs using a simplified end-to-end Convolutional Neural Network (CNN) model and occlusion sensitivity maps. link3 Early detection and faster automated screening of the COVID-19 patients is essential. For this, the images are considered from publicly available datasets. Significant biomarkers representing critical image features are extracted from CNN by experimentally investigating on cross-validation methods and hyperparameter settings. The performance of the network is evaluated using standard metrics. Perturbation based occlusion sensitivity maps are employed on the features obtained from the classification model to visualise the localization of abnormal areas. Results demonstrate that the simplified CNN model with optimised parameters is able to extract significant features with a sensitivity of 97.35% and F-measure of 96.71% to detect COVID-19 images. The algorithm achieves an Area Under the Curve-Receiver Operating Characteristic score of 99.4% with Matthews correlation coefficient of 0.93. High value of Diagnostic odds ratio is also obtained. Occlusion sensitivity maps provide precise localization of abnormal regions by identifying COVID-19 conditions. As early detection through chest radiographic images are useful for automated screening of the disease, this method appears to be clinically relevant in providing a visual diagnostic solution using a simplified and efficient model.Since December 2019, the novel COVID-19's spread rate is exponential, and AI-driven tools are used to prevent further spreading [1]. They can help predict, screen, and diagnose COVID-19 positive cases. Within this scope, imaging with Computed Tomography (CT) scans and Chest X-rays (CXRs) are widely used in mass triage situations. In the literature, AI-driven tools are limited to one data type either CT scan or CXR to detect COVID-19 positive cases. Integrating multiple data types could possibly provide more information in detecting anomaly patterns due to COVID-19. Therefore, in this paper, we engineered a Convolutional Neural Network (CNN) -tailored Deep Neural Network (DNN) that can collectively train/test both CT scans and CXRs. In our experiments, we achieved an overall accuracy of 96.28% (AUC = 0.9808 and false negative rate = 0.0208). Further, major existing DNNs provided coherent results while integrating CT scans and CXRs to detect COVID-19 positive cases.As of July 17, 2020, more than thirteen million people have been diagnosed with the Novel Coronavirus (COVID-19), and half a million people have already lost their lives due to this infectious disease. The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. Since then, social media platforms have experienced an exponential rise in the content related to the pandemic. In the past, Twitter data have been observed to be indispensable in the extraction of situational awareness information relating to any crisis. This paper presents COV19Tweets Dataset (Lamsal 2020a), a large-scale Twitter dataset with more than 310 million COVID-19 specific English language tweets and their sentiment scores. The dataset's geo version, the GeoCOV19Tweets Dataset (Lamsal 2020b), is also presented. The paper discusses the datasets' design in detail, and the tweets in both the datasets are analyzed. The datasets are released publicly, anticipating that they would contribute to a better understanding of spatial and temporal dimensions of the public discourse related to the ongoing pandemic.

Autoři článku: Watkinsvelez9911 (Boisen Blackwell)