Thorpetemple1873

Z Iurium Wiki

Verze z 18. 10. 2024, 21:32, kterou vytvořil Thorpetemple1873 (diskuse | příspěvky) (Založena nová stránka s textem „Salmonella in food. Findings from this study suggest that unique stressors on dried fruit can induce the VBNC state in Salmonella, thus rendering it undete…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Salmonella in food. Findings from this study suggest that unique stressors on dried fruit can induce the VBNC state in Salmonella, thus rendering it undetectable with culture-based methods even though the bacteria remain viable. Therefore, strong consideration should be given to using, in addition to culture-based methods, microscopic and molecular methods for the accurate detection of all viable and/or culturable cells of Salmonella contaminating dried fruit, as all these cells have the potential to cause human illness.Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological potential associated with their antimicrobial and/or anti-proliferative activities. They are synthesized by multi-modular non-ribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on sequence and length of the oligopeptide, and size of the macrocycle, if present. Phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved a suitable target gene for an alternative PCR method to detect LP-producing Pseudomonas, not rnsequently, Pseudomonas lipopeptide research affects not only chemists and microbiologists but touches a much broader audience, including biochemists, ecologists and plant biologists. In this study we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. Lomerizine However, HMO-assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose (FL)), are associated with the formation of a bifidobacteria-rich gut microbial community. Phylogenetic analysis has revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO-consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subspecies kashiwanohense and Bifidobacterium pseudocatenulatum, which both possess FL binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays forming an HMO-mediated, host-microbe symbiosis. While the co-evolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL-transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allows for bifidobacteria to import different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.Xyloglucan (XyG) is a ubiquitous plant cell wall hemicellulose that is targeted by a range of syntenic, microheterogeneous xyloglucan utilization loci (XyGUL) in Bacteroidetes species of the human gut microbiota (HGM), including Bacteroides ovatus and B. uniformis. Comprehensive biochemical and biophysical analyses have identified key differences in the protein complements of each locus that confer differential access to structurally-diverse XyG sidechain variants. A second, non-syntenic XyGUL was previously identified in B. uniformis, although its function in XyG utilization compared to its syntenic counterpart was unclear. Here, complimentary enzymatic product profiles and bacterial growth curves showcase the notable preference of BuXyGUL2 surface glycan-binding proteins (SGBPs) to bind full-length XyG, as well as a range of oligosaccharides produced by the glycoside hydrolase family 5 (GH5_4) endo-xyloglucanase from this locus. We use isothermal titration calorimetry (ITC) to characterize this binding capacomprehensive overview of the binding capacities of the SGBPs from a non-syntenic B. uniformis XyGUL and will inform future studies on the roles of complimentary loci in glycan targeting by key HGM species. Keywordshuman gut microbiota, microbiome, carbohydrate-active enzymes, carbohydrate-binding proteins, Bacteroidetes, CAZymes, polysaccharide utilization loci, xyloglucan.Methanobactins (MBs) are ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by methanotrophs for copper uptake. The post-translational modification that define MBs is the formation of two heterocyclic groups with associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB from Methylosinus trichosporium OB3b (MB-OB3b) are oxazolone groups. The precursor gene for MB-OB3b, mbnA, which is part of a gene cluster that contains both annotated and unannotated genes. One of those unannotated genes, mbnC, is found in all MB operons, and in conjunction with mbnB, is reported to be involved in the formation of both heterocyclic groups in all MBs. To determine the function of mbnC, a deletion mutation was constructed in M. trichosporium OB3b, and the MB produced from the ΔmbnC mutant was purified and structurally characterized by UV-visible absorption spectroscopy, mass spectrometry and solution NMR spectroscopy. MB-OB3b from ΔmbnC was missing the C-terminal Mon(s) of the two oxazolone groups are not identical.Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with anti-predation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defence mechanisms. To identify anti-predator strategies, thirteen V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan, Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which is toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete culence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defence strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is know about the defence mechanisms V. vulnificus expresses against predation. Here we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism enabling the production of excess organic acid that is toxic to the protozoan predator, T. pyriformis. This is a previously unknown mechanism of predation defence that protects against protozoan predators.The disinfectant Peracetic acid (PAA) can cause high levels of sublethal injury to L. monocytogenes. This study aims to evaluate phenotypic and transcriptional characteristics concerning surface attachment and virulence potential of sublethally injured L. monocytogenes ScottA and EGDe after exposure to 0.75 ppm PAA for 90 min at 4°C and subsequent incubation in TSBY at 4°C. Results showed that injured L. link2 monocytogenes cells (99% of total population) were able to attach (after 2 and 24h) on stainless steel coupons at 4°C and 20°C. In vitro virulence assays using human intestinal epithelial Caco-2 cells showed that injured L. monocytogenes could invade host cells but could not proliferate intracellularly. In vitro virulence response was strain-dependent; injured ScottA was more invasive than EGDe. Assessment of PAA-injury at the transcriptional level showed upregulation of genes (motB, flaA) involved in flagellum motility and surface attachment. The transcriptional response of L. monocytogenes EGDe and ScottA wcellular traits and phenotypic responses of this pathogen is limited. This work suggests that sublethally injured L. monocytogenes cells maintain the virulence and surface attachment potential and highlights the importance of the occurrence of sublethally injured cells regarding food safety.Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent ZeocinTM (a BLM member) treatment. One-base deletion and T to G substitution at the 5'-GT-3' motif was the most striking signature of ZeocinTM-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. ZeocinTM treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the ZeocinTM-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. link3 Importance Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of ZeocinTM (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of ZeocinTM-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to ZeocinTM, providing novel insights into how bleomycin resistance is developed in cells.

Autoři článku: Thorpetemple1873 (Basse Gorman)