Fuentesmcfarland0953

Z Iurium Wiki

Verze z 18. 10. 2024, 21:10, kterou vytvořil Fuentesmcfarland0953 (diskuse | příspěvky) (Založena nová stránka s textem „In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^- absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^- absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as Ξ^-+^14N→_Λ^10Be+_Λ^5He. For the binding energy of the Ξ^- hyperon in the Ξ^--^14N system a value of 1.27±0.21  MeV was deduced. Nazartinib The energy level of Ξ^- is likely a nuclear 1p state which indicates a weak ΞN-ΛΛ coupling.The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.Cyclotetrabenzoin esters can host terminal triple bonds of alkynes and nitriles in their cavities, as revealed by cocrystal structures of four such complexes. Within cyclotetrabenzoin cavities, π-clouds of triple bonds establish favorable and virtually equidistant interactions with the four aromatic walls of the cyclotetrabenzoin skeleton. Binding is selective for aliphatic nitriles and terminal alkynes, with their aromatic counterparts residing outside of the cyclotetrabenzoin cavity.Profound understanding of the luminescence mechanism and structure-property relationship is vital for Cu(I) thermally activated delayed fluorescence (TADF) emitters. Herein, we theoretically simulated luminescent behavior in both solution and solid phases for two Cu(I) complexes and found the following (i) The strengthened spin-orbit coupling (SOC) effect by more dx2-y2 orbital contributions and well-restricted structural distortion via remarkable intramolecular interaction in [Cu(dmp)(POP)]+ enable the emission at room temperature to be a mixture of direct phosphorescence (10%) and TADF (90%). (ii) Benefiting from enhanced steric hindrance and the electron-donating ability of the paracyclophane group, the narrowed S1-T1 energy separation (ΔEST) in [Cu(dmp)(phanephos)]+ accelerates the reverse intersystem crossing, promoting the TADF rate (1.88 × 105 s-1) and intensity ratio (98.3%). These results indicate that the small ΔEST is superior for reducing the lifetime and that the strong SOC stimulates the phosphorescence to compete with TADF, which are both conducive to avoiding collision-induced exciton quenching and reducing the roll-off in devices.We use accurate ab initio methodologies at the coupled cluster level ((R)CCSD(T)) and its explicitly correlated version ((R)CCSD(T)-F12) to investigate the electronic structure, relative stability, and spectroscopy of the stable isomers of the [S2O2] system and of some of its cations and dications, with a special focus on the most relevant isomers that could be involved in terrestrial and planetary atmospheres. This work identifies several stable isomers (10 neutral, 8 cationic, and 5 dicationic), including trigonal-OSSO, cis-OSSO, and cyc-OSSO. For all these isomers, we calculated geometric parameters, fragmentation energies, and simple and double ionization energies of the neutral species. Several structures are identified for the first time, especially for the ionic species. Computations show that in addition to cis-OSSO and trans-OSSO proposed for the absorption in the near-UV spectrum of the Venusian atmosphere other S2O2, S2O2+, and S2O22+ species may contribute. Moreover, the characterization of the stability of singly and doubly charged S2O2 entities can also be used for their identification by mass spectrometry and UV spectroscopy in the laboratory or in planetary atmospheres. In sum, the quest for the main UV absorber in Venus' atmosphere is not over, since the physical chemistry of sulfur oxides in Venus' atmosphere is far from being understood.Two-dimensional (2D) materials have attracted significant attention for their ability to support novel magneto-electrical transport and their optical and magnetic properties, of which their superconductivity is particularly of interest. Here we report on the behavior of superconductivity in 2D Mo2C crystals when hydrostatic pressure is applied, which has not yet been described in the literature. We found that the localization of boundary atoms disorder-induced Cooper pairs can suppress the superconducting transition temperature (Tc) as effectively as a magnetic field and current. We observed that the Tc initially decreased as the pressure increased to 1.75 GPa but then began to increase as the pressure increased further to 2.5 GPa. Our density functional theory calculations revealed that this behavior was linked to the modulation of the strength of the electron-phonon coupling and the electron property, which was triggered by compression of the lattice under high pressure. We attributed the inflection point in the hydrostatic pressure-dependent Tc curve to the structural phase transition of Mo2C from a hexagonal to an orthorhombic structure. This work presents a new avenue for the study of the superconductivity of Mo2C, which can be extended to apply to other 2D superconductors to modulate their electronic states.Quantum chemistry studies of biradical systems are challenging due to the required multiconfigurational nature of the wavefunction. In this work, Variational Quantum Eigensolver (VQE) is used to compute the energy profile for the lithium superoxide dimer rearrangement, involving biradical species, on quantum simulators and devices. Considering that current quantum devices can only handle limited number of qubits, we present guidelines for selecting an appropriate active space to perform computations on chemical systems that require many qubits. We show that with VQE performed with a quantum simulator reproduces results obtained with full-configuration interaction (Full CI) for the chosen active space. However, results deviate from exact values by about 39 mHa for calculations on a quantum device. This deviation can be improved to about 4 mHa using the readout mitigation approach and can be further improved to 2 mHa, approaching chemical accuracy, using the state tomography technique to purify the calculated quantum state.

Autoři článku: Fuentesmcfarland0953 (Christie Mathiasen)