Husumbjerrum0382

Z Iurium Wiki

Verze z 18. 10. 2024, 19:38, kterou vytvořil Husumbjerrum0382 (diskuse | příspěvky) (Založena nová stránka s textem „Chemical reaction dynamics in solution are closely related to solvation dynamics, and understanding solvent responses remains a crucial issue in chemistry…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Chemical reaction dynamics in solution are closely related to solvation dynamics, and understanding solvent responses remains a crucial issue in chemistry and chemical biology. In this study, we experimentally and computationally investigated the solvation dynamics along different solvation coordinates of the same molecule the electronically excited state and ground state of the p-aminophenylthiyl radical generated by the photodissociation of bis(p-aminophenyl)disulfide. Time profiles of the peak shifts from the transient absorption and emission spectra after photodissociation were extracted to discuss the solvent reorganization process in various ionic liquids (ILs) with different viscosities. The absorption peak position of the radical followed common solvation dynamics, shifting to a lower energy with time due to reorganization of the surrounding solvent molecules in response to the charge redistribution and molecular volume change caused by photodissociation. On the other hand, the emission band of the radical did not show a meaningful spectral shift with time. It was also found that the solvation time in the ground state was not strongly dependent on the solvent viscosity. These experimental results deviate from the conventional dynamic Stokes shift theory. To discuss the experimental results, non-equilibrium molecular dynamics simulations were conducted. The spectral shift obtained by MD simulations indicated the existence of a large solvation energy change and solvation dynamics around the radical after the photodissociation. On the other hand, the electronic excitation of the radical brought about a relatively smaller solvation energy change, especially at the long delay time after the photodissociation. These differences might be one of the reasons for the unique experimentally observed solvation dynamics.Cross-coupling reactions to form biaryls and π bond addition reactions to prepare substituted carbonyls or alcohols represent two of the most frequently performed families of chemical reactions. Recent progress in catalysis has uncovered substantial overlap between these two seemingly distinct topics. In particular, esters, aldehydes, and alcohols have been shown to act as carbon-based coupling partners in a range of Ni- and Pd-catalyzed reactions to prepare amides, ketones, substituted alcohols, alkanes, and more. These reactions provide promising alternatives to commonly used stoichiometric or multi-step reaction sequences. In this feature article, a selection of these transformations will be discussed with an emphasis on the key mechanistic steps that allow these non-traditional substrates to be incorporated into cross-coupling-like catalytic cycles.A convenient way to analyse solvent structure around a solute is to use solvation shells, whereby solvent position around the solute is discretised by the size of a solvent molecule, leading to multiple shells around the solute. The two main ways to define multiple shells around a solute are either directly with respect to the solute, called solute-centric, or locally for both solute and solvent molecules alike. It might be assumed that both methods lead to solvation shells with similar properties. However, our analysis suggests otherwise. Solvation shells are analysed in a series of simulations of five pure liquids of differing polarity. Shells are defined locally working outwards from each molecule treated as a reference molecule using two methods the cutoff at the first minimum in the radial distribution function and the parameter-free Relative Angular Distance method (RAD). CP21 cost The molecular properties studied are potential energy, coordination number and coordination radius. Rather than converging to bulk values, as might be expected for pure solvents, properties are found to deviate as a function of shell index. This behaviour occurs because molecules with larger coordination numbers and radius have more neighbours, which make them more likely to be connected to the reference molecule via fewer shells. The effect is amplified for RAD because of its more variable coordination radii and for water with its more open structure and stronger interactions. These findings indicate that locally defined shells should not be thought of as directly comparable to solute-centric shells or to distance. As well as showing how box size and cutoff affect the non-convergence, to restore convergence we propose a hybrid method by defining a new set of shells with boundaries at the uppermost distance of each locally derived shell.Rate coefficients, k, for the gas-phase Cl + Furan-2,5-dione (C4H2O3, maleic anhydride) reaction were measured over the 15-500 torr (He and N2 bath gas) pressure range at temperatures between 283 and 323 K. Kinetic measurements were performed using pulsed laser photolysis (PLP) to produce Cl atoms and atomic resonance fluorescence (RF) to monitor the Cl atom temporal profile. Complementary relative rate (RR) measurements were performed at 296 K and 620 torr pressure (syn. air) and found to be in good agreement with the absolute measurements. A Troe-type fall-off fit of the temperature and pressure dependence yielded the following rate coefficient parameters ko(T) = (9.4 ± 0.5) × 10-29 (T/298)-6.3 cm6 molecule-2 s-1, k∞(T) = (3.4 ± 0.5) × 10-11 (T/298)-1.4 cm3 molecule-1 s-1. The formation of a Cl·C4H2O3 adduct intermediate was deduced from the Cl atom temporal profiles and an equilibrium constant, KP(T), for the Cl + C4H2O3 ↔ Cl·C4H2O3 reaction was determined. A third-law analysis yielded ΔH = -15.7 ± 0.4 kcal mol-1 with ΔS = -25.1 cal K-1 mol-1, where ΔS was derived from theoretical calculations at the B3LYP/6-311G(2d,p,d) level. In addition, the rate coefficient for the Cl·C4H2O3 + O2 reaction at 296 K was measured to be (2.83 ± 0.16) × 10-12 cm3 molecule-1 s-1, where the quoted uncertainty is the 2σ fit precision. Stable end-product molar yields of (83 ± 7), (188 ± 10), and (65 ± 10)% were measured for CO, CO2, and HC(O)Cl, respectively, in an air bath gas. An atmospheric degradation mechanism for C4H2O3 is proposed based on the observed product yields and theoretical calculations of ring-opening pathways and activation barrier energies at the CBS-QB3 level of theory.

Autoři článku: Husumbjerrum0382 (Luna Mcmillan)