Asmussendowd9598
Accumulation of PEX materials contributed to early corneal endothelial decompensation.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Post stroke dysphagia (PSD) is common and associated with poor outcome. The Dysphagia Severity Rating Scale (DSRS), which grades how severe dysphagia is based on fluid and diet modification and supervision requirements for feeding, is used for clinical research but has limited published validation information. Multiple approaches were taken to validate the DSRS, including concurrent- and predictive criterion validity, internal consistency, inter- and intra-rater reliability and sensitivity to change. This was done using data from four studies involving pharyngeal electrical stimulation in acute stroke patients with dysphagia, an individual patient data meta-analysis and unpublished studies (NCT03499574, NCT03700853). In addition, consensual- and content validity and the Minimal Clinically Important Difference (MCID) were assessed using anonymous surveys sent to UK-based Speech and Language Therapists (SLTs). Scores for consensual validity were mostly moderate (62.5-78%) to high or excellent (89-100%) for most scenarios. All but two assessments of content validity were excellent. In concurrent criterion validity assessments, DSRS was most closely associated with measures of radiological aspiration (penetration aspiration scale, Spearman rank rs = 0.49, p 0.90). DSRS was sensitive to positive change during recovery (medians 7, 4 and 1 at baseline and 2 and 13 weeks respectively) and in response to an intervention, pharyngeal electrical stimulation, in a published meta-analysis. The MCID was 1.0 and DSRS and FOIS scores may be estimated from each other. The DSRS appears to be a valid tool for grading the severity of swallowing impairment in patients with post stroke dysphagia and is appropriate for use in clinical research and clinical service delivery.In birds, like in mammals, the hippocampus is particularly sensitive to exposure to novel environments, a function that is based on visual input. Chicks' eyes are placed laterally and their optic fibers project mainly to the contralateral brain hemispheres, with only little direct interhemispheric coupling. Thus, monocular occlusion has been frequently used in chicks to document functional specialization of the two hemispheres. However, we do not know whether monocular occlusion influences hippocampal activation. The aim of the present work was to fill this gap by directly testing this hypothesis. To induce hippocampal activation, chicks were exposed to a novel environment with their left or right eye occluded, or in conditions of binocular vision. Their hippocampal expression of c-Fos (neural activity marker) was compared to a baseline group that remained in a familiar environment. Interestingly, while the hippocampal activation in the two monocular groups was not different from the baseline, it was significantly higher in the binocular group exposed to the novel environment. This suggest that the representation of environmental novelty in the hippocampus of domestic chicks involves strong binocular integration.We aimed to identify an Alzheimer's disease (AD) subtype with right predominant focal atrophy. We recruited 17 amyloid PET positive logopenic variant primary progressive aphasia (lvPPA) and 226 amyloid PET positive AD patients. this website To identify AD with right focal atrophy (Rt-AD), we selected cortical areas that showed more atrophy in lvPPA than in AD and calculated an asymmetry index (AI) for this area in each individual. Using a receiver operating characteristic curve, we found that the optimal AI cut-off to discriminate lvPPA from AD was -3.1 (mean AI - 1.00 standard deviation) (sensitivity 88.2, specificity 89.8). We identified 32 Rt-AD patients whose AI was above mean AI + 1.00 standard deviation, 38 Lt-AD patients whose AI was lower than mean AI - 1.00 standard deviation, and 173 Symmetric-AD patients whose AI was within mean AI ± 1.00 standard deviation. We characterized clinical and cognitive profiles of Rt-AD patients by comparing with those of Lt-AD and Symmetric-AD patients. Compared to Symmetric-AD patients, Rt-AD patients had asymmetric focal atrophy in the right temporoparietal area and showed poor performance on visuospatial function testing (p = 0.009). Our findings suggested that there is an AD variant characterized by right focal atrophy and visuospatial dysfunction.Diseases pose an ongoing threat to aquaculture, fisheries and conservation of marine species, and determination of risk factors of disease is crucial for management. Our objective was to decipher the effects of host, pathogen and environmental factors on disease-induced mortality of Pacific oysters (Crassostrea gigas) across a latitudinal gradient. We deployed young and adult oysters at 13 sites in France and we monitored survival, pathogens and environmental parameters. The young oysters came from either the wild collection or the hatchery while the adults were from the wild only. We then used Cox regression models to investigate the effect of latitude, site, environmental factors and origin on mortality risk and to extrapolate this mortality risk to the distribution limits of the species in Europe. We found that seawater temperature, food level, sea level atmospheric pressure, rainfall and wind speed were associated with mortality risk. Their effect on hatchery oysters was generally higher than on wild animals, probably reflecting that hatchery oysters were free of Ostreid herpesvirus 1 (OsHV-1) whereas those from the wild were asymptomatic carriers. The risk factors involved in young and adult oyster mortalities were different, reflecting distinct diseases. Mortality risk increases from 0 to 90% with decreasing latitude for young hatchery oysters, but not for young wild oysters or adults. Mortality risk was higher in wild oysters than in hatchery ones at latitude > 47.6°N while this was the opposite at lower latitude. Therefore, latitudinal gradient alters disease-induced mortality risk but interacts with the initial health status of the host and the pathogen involved. Practically, we suggest that mortality can be mitigated by using hatchery oysters in north and wild collected oysters in the south.