Hendersonmerrill3925

Z Iurium Wiki

Verze z 18. 10. 2024, 15:26, kterou vytvořil Hendersonmerrill3925 (diskuse | příspěvky) (Založena nová stránka s textem „The ECOi index is focused on the ecotoxicological impact against non-target organisms. The helpfulness of this index stands in its ability to easily discri…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The ECOi index is focused on the ecotoxicological impact against non-target organisms. The helpfulness of this index stands in its ability to easily discriminate the ecotoxicological impact of chemicals using indicators commonly available in literature and without making complex calculations. PRISW-1 Index discriminate active substances according to their risk against three representative non-target organisms. However, due to the intrinsic characteristics of each pesticide, a high PRISW-1 value could not always mean an easy movement of the chemical via runoff waters. The information deriving from Priority index may certainly help public authorities to select chemicals to be detected in water monitoring campaigns. The application of these indices may represent a valid decision tool for public stakeholders in defining agricultural measures to reduce the externalities of pest control.The performance of different suspended fillers (zeolite, drinking water treatment residual, biochar, woodchip and stereo-elastic packing) and their combinations in treating municipal wastewater in ecological floating beds (Eco-FBs) planted with Myriophyllum aquaticum was assessed. Six sets of enhanced Eco-FBs were developed to assess the individual and synergistic effects of combinations of the various fillers and microorganisms on nutrient elimination. The results demonstrated mean TN, NH4-N, TP and COD purification efficiencies of 99.2 ± 11.2 %, 99.82 ± 16.4 %, 98.3 ± 14.3 %, and 96.1 ± 12.3 %, respectively in the Eco-FBs strengthened with all five fillers. The corresponding purification rates were 0.89 ± 0.14, 0.75 ± 0.12, 0.08 ± 0.016, and 7.05 ± 1.09 g m-2 d-1, which were 2-3 times higher than those of the conventional Eco-FB system. High-throughput sequencing showed that some genera related to nutrient transformation, including Proteobacteria (24.13-51.95 %), followed by Chloroflexi (5.64-25.01 %), Planctomycetes (8.48-14.43 %) and Acidobacteria (2.29-11.65 %), were abundantly enriched in the strengthened Eco-FBs. Enhancement of the Eco-FBs with various fillers significantly increased microbial species richness and diversity as demonstrated by Chao1, Shannon and Simpson's indexes, particularly when all the five fillers were combined. Therefore, introducing suspended fillers into Eco-FBs is an appropriate approach for improving nutrient elimination from municipal wastewater.The removal of emerging pollutants from municipal wastewater was studied for the first time using a three-step pilot-scale system 1) hybrid digester (HD) as first step, 2) subsurface vertical flow constructed wetland (VF) as second step, and 3) photodegradation (PD) unit as third step or post-treatment. The HD and VF units were built and operated in series with effluent recirculation at pilot scale. For the PD post-treatment, three alternatives were studied at lab-scale, i) UVC irradiation at 254 nm (0.5 h exposure time), ii) UVA irradiation at 365 nm using a TiO2-based photocatalyst and iii) sunlight irradiation using a TiO2-based photocatalyst, the last two for 1 and 2 h. Alternative iii) was also tested at pilot-scale. Degradation of nine compounds was evaluated acetaminophen (ACE), caffeine (CAF), carbamazepine (CBZ), ketoprofen (KET), ibuprofen (IBU), diclofenac (DCL), clofibric acid (ACB), bisphenol A (BPA), and sotalol (SOT). Overall, the HD-VF-UVC system completely removed (>99.5 %) ACE, CAF, KET, IBU, DCL and ACB, and to a lesser extent SOT (98 %), BPA (83 %) and CBZ (51 %). On the other hand, the HD-VF-UVA/TiO2 system (at 2 h) achieved >99.5 % removal of ACE, CAF, KET, IBU and DCL while ACB, BPA, CBZ and SOT were degraded by 83 %, 81 %, 78 % and 68 %, respectively. Working also at 2 h of exposure time, in summer conditions, the HD-VF-Sol/TiO2 system achieved >99.5 % removal of ACE, CAF, KET, IBU, DCL and ACB, and to a minor extent BPA (80 %), SOT (74 %) and CBZ (69 %). Similar results, although slightly lower for SOT (60 %) and CBZ (59 %), were obtained in the pilot sunlight plus TiO2 catalyst unit. However, the use of sunlight irradiation with a TiO2-based photocatalyst clearly showed lower removal efficiency in autumn conditions (i.e., 47 % SOT, 31 % CBZ).Phosphorus usage is irreplaceable in agriculture; however, its excessive use leads to wastage of invaluable resources and significant soil surplus. Agronomic soil phosphorus surplus in Asian regions has a much higher level than the global average. And with rapid urbanization and population growth in the recent decades, Asian countries have seen a rise in environmental pollution levels also. This study assessed the detailed phosphorus budget in the Yamato River catchment, an urbanized coastal catchment in Asia, from 1940s to 2010s using Soil and Water Assessment Tool, comprehensively analyzed the effect of anthropogenic factors on long-term phosphorus loading and agronomic soil phosphorus balance. The results showed the peak period of total phosphorus loading and agronomic soil phosphorus surplus occurred in 1970s, at 895 tons/year and 36.6 kg/ha, respectively. The major reasons for increased phosphorus loading and soil surplus during 1940-1970 were rapid population growth and increased fertilizer usage, respectively. Since the 1980s, the construction of wastewater treatment system and reduction in agricultural land contributed to environmental improvement. These anthropogenic factors had a much stronger impact on phosphorus budget than climate change in the study catchment. Soil phosphorus balance is affected by a combination of factors, such as soil properties, fertilizer usage and applied schedule, precipitation event, and crop types. And soil phosphorus surplus may be severely overestimated if the non-point source loss due to precipitation factor is not fully considered.Polluted stormwater (PSW) treatment is becoming increasingly important because of the existence of multiple pollutants from non-point pollution sources. Alfalfa biochar loaded with Mg/Fe layered double hydroxide (AF-LDH) was successfully synthesized to remove trace metal(loid)s from stormwater. The adsorption kinetics and isotherms of metal(loid)s in a mono-component system and the reusability of the composite materials was investigated in this study. The result showed that the maximum removal efficiency for Pb(II), Cu(II), Zn(II), Cd(II), As(V), and Cr(VI) were 98.98 %, 98.11 %, 97.88 %, 97.71 %, 98.81 %, and 50.89 %, respectively, when added calcined AF-LDH (AF-LDO) composite material to the multi-component solution. The AF-LDH and AF-LDO could efficiently remove trace pollutants (10-100 μg/L) from multi-component solution, especially for AF-LDO, which could completely remove the tested six trace metal(loid)s. https://www.selleckchem.com/products/sr10221.html Furthermore, Fourier transform infrared spectra and X-ray diffraction characterizations supported the Mg/Fe layered double hydroxide reconstruction. The main mechanisms of Pb(II), Cu(II), Zn(II), and Cd(II) (cationic metals) removal were ion exchange and surface precipitation, whereas As(V) and Cr(VI) (anionic metals) were mainly dislodged through the formation of surface complexation, electrostatic attraction, and interlayer anion exchange, concerning the -OH and -COOH of AF-LDH. Importantly, the results of the column experiment demonstrated that AF-LDO was superior to AF-LDH for anionic metal removal from stormwater. In this study, we synthesized AF-LDH and AF-LDO for trace metal(loid) removal and proposed a new and practical approach for stormwater purification.Nitrous oxide (N2O) is currently the leading ozone-depleting gas and is also a potent greenhouse gas. Predictions of N2O emissions from riverine systems are difficult and mostly accomplished via regression equations based on dissolved inorganic nitrogen (DIN) concentrations or fluxes, although recent studies have shown that hydromorphological characteristics can influence N2O emissions in riverine reaches. Here, we propose a predictive model for N2O riverine concentrations and emissions at the reach scale. The model is based on Damköhler numbers and captures the primary effects of reach-scale biogeochemical and hydromorphological characteristics in flowing waters. It explains the change in N2O emissions from small streams to large rivers under varying conditions including biome, land use, climate, and nutrient availability. The model and observed data show that dimensionless N2O concentrations and emission rates have higher variability and mean values for small streams (reach width less then 10 m) than for larger streams due to high spatial variability of stream hydraulics and morphology.Silica nanoparticles (SiNPs) are among the most abundantly produced nanosized particles in the global market, and their potential toxicity has aroused a great concern. Increasing epidemiological investigations and experimental evidence revealed the threaten of SiNPs exposure to cardiovascular system. The myocardial toxicity caused by SiNPs was gradually demonstrated, nevertheless, the underlying mechanisms remain unclear. In view of mitochondria serving as the centrality in the prominent of cardiovascular disease, we investigated the role of mitochondria and related mechanisms in SiNPs-induced adverse effects on cardiomyocytes. As a result, SiNPs were found in cytoplasm, accompanied with morphological alterations in mitochondria, such as cristae fracture or disappearance, vacuolation. The induction of mitochondrial dysfunction by SiNPs was confirmed, as indicated by the excessive reactive oxygen species (ROS) formation, and blockage of cellular respiratory and ATP production. Concomitantly, SiNPs activated mitochondria-mediated apoptotic signaling in view of the up-regulated BAX, increased Caspase-9 cleavage and declined Bcl-2, ultimately resulting in myocardial apoptosis. It was noteworthy that SiNPs disturbed mitochondrial dynamics toward fission phenotype, which was supported by the dysregulated fission/fusion regulators. Especially, DRP1 and its phosphorylated level at s616 (p-DRP1s616) were up-regulated, whilst its phosphorylated level at s637 (p-DRP1s637) and PKA phosphorylation were down-regulated in SiNPs-treated cardiomyocytes in a dose-dependent manner. More importantly, the mechanistic investigations revealed PKA-DRP1-mediated mitochondrial fission was responsible for SiNPs-induced cardiomyocyte apoptosis through the mitochondria-mediated apoptotic way. This study firstly demonstrated the disturbance of mitochondrial dynamics played a crucial role in cardiomyocyte apoptosis caused by SiNPs, attributing to PKA-DRP1-mitochondrial fission signaling.The successful dispersal of coral larvae is vital to the population replenishment and reef recovery and resilience. Despite that this critical early stage is susceptible to ocean warming and acidification, little is known about the responses of coral larvae to warming and acidification across different biological scales. This study explored the influences of elevated temperature (29 °C versus 33 °C) and pCO2 (500 μatm versus 1000 μatm) on brooded larvae of Pocillopora damicornis at the organismal, cellular and gene expression levels. Heat stress caused bleaching, depressed light-enhanced dark respiration, photosynthesis and autotrophy, whereas high pCO2 stimulated photosynthesis. Although survival was unaffected, larvae at 33 °C were ten-times more likely to settle than those at 29 °C, suggesting reduced capacity to disperse and differentiate suitable substrate. Remarkably, heat stress induced greater symbiont loss at ambient pCO2 than at high pCO2, while cell-specific pigment concentrations of symbionts at 33 °C increased twofold under ambient pCO2 relative to high pCO2, suggesting pCO2-dependent bleaching patterns.

Autoři článku: Hendersonmerrill3925 (Potter Knox)