Ankersenvangsgaard7817

Z Iurium Wiki

Verze z 18. 10. 2024, 15:09, kterou vytvořil Ankersenvangsgaard7817 (diskuse | příspěvky) (Založena nová stránka s textem „Strongyllodes variegatus (Fairmaire) is a major insect pest of oilseed rape in China. Despite its economic importance, the contribution of its population g…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Strongyllodes variegatus (Fairmaire) is a major insect pest of oilseed rape in China. Despite its economic importance, the contribution of its population genetics in the development of any suitable protection control strategy for the management of oilseed rape crops is poorly studied. It is a much urgent need to prevent its spread to the rest of the world.

Using the sequences of mitochondrial DNA cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) as genetic markers, we analyzed the population genetic diversity and structure of 437 individuals collected from 15 S. variegatus populations located in different oilseed rape production areas in China. In addition, we estimated the demographic history using neutrality test and mismatch distribution analysis. The high level of genetic diversity was detected among the COI and Cytb sequences of S. variegatus. The population structure analyses strongly suggested three distinct genetic and geographical regions in China with limited gene flow. The Mantel test showed that the genetic distance was greatly influenced by the geographical distance. The demographic analyses showed that S. variegatus had experienced population fluctuation during the Pleistocene Epoch, which was likely to be related to the climatic changes.

Overall, these results demonstrate that the strong genetic structure of S. variegatus populations in China, which is attributed by the isolation through the geographical distance among populations, their weak flight capacity and subsequent adaptation to the regional ecological conditions.

Overall, these results demonstrate that the strong genetic structure of S. variegatus populations in China, which is attributed by the isolation through the geographical distance among populations, their weak flight capacity and subsequent adaptation to the regional ecological conditions.

Rearrangement is an important topic in the research of amphibian mitochondrial genomes ("mitogenomes" hereafter), whose causes and mechanisms remain enigmatic. Globally examining mitogenome rearrangements and uncovering their characteristics can contribute to a better understanding of mitogenome evolution.

Here we systematically investigated mitogenome arrangements of 232 amphibians including four newly sequenced Dicroglossidae mitogenomes. The results showed that our new sequenced mitogenomes all possessed a trnM tandem duplication, which was not exclusive to Dicroglossidae. By merging the same arrangements, the mitogenomes of ~ 80% species belonged to the four major patterns, the major two of which were typical vertebrate arrangement and typical neobatrachian arrangement. Using qMGR for calculating rearrangement frequency (RF) (%), we found that the control region (CR) (RF = 45.04) and trnL2 (RF = 38.79) were the two most frequently rearranged components. Forty-seven point eight percentage of amphibians possessed rearranged mitogenomes including all neobatrachians and their distribution was significantly clustered in the phylogenetic trees (p < 0.001). In addition, we argued that the typical neobatrachian arrangement may have appeared in the Late Jurassic according to possible occurrence time estimation.

It was the first global census of amphibian mitogenome arrangements from the perspective of quantity statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic characteristics of these rearrangements.

It was the first global census of amphibian mitogenome arrangements from the perspective of quantity statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic characteristics of these rearrangements.

Long noncoding RNAs represent a large class of transcripts with two common features they exceed an arbitrary length threshold of 200 nt and are assumed to not encode proteins. Although a growing body of evidence indicates that the vast majority of lncRNAs are potentially nonfunctional, hundreds of them have already been revealed to perform essential gene regulatory functions or to be linked to a number of cellular processes, including those associated with the etiology of human diseases. Sumatriptan To better understand the biology of lncRNAs, it is essential to perform a more in-depth study of their evolution. In contrast to protein-encoding transcripts, however, they do not show the strong sequence conservation that usually results from purifying selection; therefore, software that is typically used to resolve the evolutionary relationships of protein-encoding genes and transcripts is not applicable to the study of lncRNAs.

To tackle this issue, we developed lncEvo, a computational pipeline that consists of three mreely available for academic and nonacademic use under the MIT license at https//gitlab.com/spirit678/lncrna_conservation_nf .

In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from 'omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments.

We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs.

Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish.

Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish.

Autoři článku: Ankersenvangsgaard7817 (Rivas Joyner)