Raschratliff2212

Z Iurium Wiki

Verze z 18. 10. 2024, 05:21, kterou vytvořil Raschratliff2212 (diskuse | příspěvky) (Založena nová stránka s textem „Trusting in others and reciprocating that trust with trustworthy actions are crucial to successful and prosperous societies. The trust game has been widely…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Trusting in others and reciprocating that trust with trustworthy actions are crucial to successful and prosperous societies. The trust game has been widely used to quantitatively study trust and trustworthiness, involving a sequential exchange between an investor and a trustee. Deterministic evolutionary game theory predicts no trust and no trustworthiness, whereas the behavioral experiments with the one-shot anonymous trust game show that people substantially trust and respond trustworthily. To explain these discrepancies, previous works often turn to additional mechanisms, which are borrowed from other games such as the prisoner's dilemma. Although these mechanisms lead to the evolution of trust and trustworthiness to an extent, the optimal or the most common strategy often involves no trustworthiness. In this paper, we study the impact of asymmetric demographic parameters (e.g., different population sizes) on game dynamics of the trust game. We show that, in a weak-mutation limit, stochastic evolutionary dynamics with the asymmetric parameters can lead to the evolution of high trust and high trustworthiness without any additional mechanisms in well-mixed finite populations. Even full trust and near full trustworthiness can be the most common strategies. These results are qualitatively different from those of the previous works. Our results thereby demonstrate rich evolutionary dynamics of the asymmetric trust game.Changes in membrane deformation and compressibility, induced by an external electric field, are investigated using coarse-grained martini force field simulations in a salt-free environment. We observe changes in the area of the membrane above a critical electric field. Below this value, the membrane compressibility modulus is found to decrease monotonically. For higher electric fields, the membrane projected area remains constant while the net interfacial area increases, with the corresponding compressibility moduli, show the opposite behavior. We find that the mechanical parameters, surface tension and bending modulus, of a freely floating membrane in the absence of explicit ions, are unaffected by the presence of the electric field. We believe these results have a bearing on our understanding of the electroformation of uncharged lipids in a salt-free environment.The swelling and compression of hydrogels in polymer solutions can be understood by considering hydrogel-osmolyte-solvent interactions which determine the osmotic pressure difference between the inside and the outside of a hydrogel particle and the changes in effective solvent quality for the hydrogel network. Epigenetic inhibitor Using the theory of poroelasticity, we find the exact solution to hydrogel dynamics in a dilute polymer solution, which quantifies the effect of diffusion and partitioning of osmolyte and the related solvent quality change to the volumetric changes of the hydrogel network. By making a dominant-mode assumption, we propose a model for the swelling and compression dynamics of (spherical) hydrogels in concentrated polymer solutions. Osmolyte diffusion induces a biexponential response in the size of the hydrogel radius, whereas osmolyte partitioning and solvent quality effects induce monoexponential responses. Comparison of the dominant-mode model to experiments provides reasonable values for the compressive bulk modulus of a hydrogel particle, the permeability of the hydrogel network, and the diffusion constant of osmolyte molecules inside the hydrogel network. Our model shows that hydrogel-osmolyte interactions can be described in a conceptually simple manner, while still capturing the rich (de)swelling behaviors observed in experiments. We expect our approach to provide a roadmap for further research into and applications of hydrogel dynamics induced by, for example, changes in the temperature and the pH.The complex vocalizations found in different bird species emerge from the interplay between morphological specializations and neuromuscular control mechanisms. In this work we study the dynamical mechanisms used by a nonlearner bird from the Americas, the suboscine Pitangus sulphuratus, in order to achieve a characteristic timbre of some of its vocalizations. By measuring syringeal muscle activity, air sac pressure, and sound as the bird sings, we are able to show that the birds of this species manage to lock the frequency difference between two sound sources. This provides a precise control of sound amplitude modulations, which gives rise to a distinct timbral property.We propose a numerical technique to compute the equilibrium free energy of glasses that cannot be prepared quasireversibly. For such systems, standard techniques for estimating the free energy by extrapolation cannot be used. Instead, we use a procedure that samples the equilibrium partition function of the basins of attraction of the different inherent structures (local potential energy minima) of the system. If all relevant inherent structures could be adequately sampled in the (supercooled) liquid phase, our approach would be rigorous. In any finite simulation, we will miss the lower-energy inherent structures that become dominant at very low temperatures. We find that our free energy estimates for a Kob-Andersen glass are lower than those obtained by very slow cooling, even at temperatures down to one-third of the glass transition temperature. The current approach could be applied to compute the chemical potential of ultrastable glassy materials and should enable the estimation of their solubility.Condensation and boiling are phase transitions highly relevant to industry, geology, and atmospheric science. These phase transitions are initiated by the nucleation of a drop in a supersaturated vapor and of a bubble in an overstretched liquid, respectively. The surface tension between both phases, liquid and vapor, is a key parameter in the development of such nucleation stage. Whereas the surface tension can be readily measured for a flat interface, there are technical and conceptual limitations to obtain it for the curved interface of the nucleus. On the technical side, it is quite difficult to observe a critical nucleus in experiments. From a conceptual point of view, the interfacial free energy depends on the choice of the dividing surface, being the surface of tension the one relevant for nucleation. We bypass the technical limitation by performing simulations of a Lennard-Jones fluid where we equilibrate critical nuclei (both drops and bubbles). Regarding the conceptual hurdle, we find the relevant cluster size by searching the radius that correctly predicts nucleation rates and nucleation free energy barriers when combined with Classical Nucleation Theory.

Autoři článku: Raschratliff2212 (England Rindom)