Acevedobendsen1097

Z Iurium Wiki

Verze z 18. 10. 2024, 05:20, kterou vytvořil Acevedobendsen1097 (diskuse | příspěvky) (Založena nová stránka s textem „6 ± 26.0 J m-2, which also is 40-400-fold, 2-40-fold, and ∼8-fold higher than those of the mussel-based adhesive, cyanoacrylate, and fibrin glues, respe…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

6 ± 26.0 J m-2, which also is 40-400-fold, 2-40-fold, and ∼8-fold higher than those of the mussel-based adhesive, cyanoacrylate, and fibrin glues, respectively. Moreover, the hydrogels can gel rapidly within 60 s and have a tunable degradation suitable for tissue regeneration. Together with their cytocompatibility and good cell adhesion, they are promising materials as new biological adhesives.Fullerenes have been recognized as good candidates for solid lubricants. In this study, the microscale superlubricity of fullerene derivatives was accomplished by the construction of regular host-guest assembly structures. Herein, the host-guest assembly structures of fullerene derivatives were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing the macrocycles as the templates and were explicitly revealed by scanning tunneling microscopy (STM). Meanwhile, the nanotribological properties of the host-guest assemblies were measured using atomic force microscopy (AFM), revealing ultralow friction coefficients of 0.003-0.008, which could be attributed to the restriction on removal of fullerene molecules after introducing the templates. The interaction energies were calculated by density functional theory (DFT) method, which indicates the correlation between friction coefficients and interaction strength in the host-guest assemblies. The effort on fullerene-related superlubricity could extend the solid superlubrication systems and provide a novel pathway to explore the friction mechanisms at the molecular level.Existing tissue adhesives have a trade-off between adhesive strength and biocompatibility. Here, we report a series of biocompatible multiarmed polycaprolactones (PCL) as tissue adhesives that can be released from a hot glue gun and the length of each arm was kept at ∼2-3 kg mol-1 in all the polymers. The adhesion properties were dependent on the number of functionalized (N-hydroxysuccinimide ester (NHS), aldehyde (CHO), and isocyanate (NCO)) arms of the multiarmed polymers. The more arms, the higher the adhesion strength. For example, the adhesion strength in binding cut rat skin increased from 2.3 N cm-2 for 2PCL-NHS to 11.2 N cm-2 for 8-PCL-NHS. selleck compound CHO- and NCO-modified 8PCL also had suitable adhesive properties. All the multiarmed polymers had minimal cytotoxicity in vitro and good biocompatibility in vivo, suggesting their potential as promising alternative surgical adhesives.This study presents a Gaussian pulse anodization approach to generate nanoporous photonic crystals with highly tunable and controllable optical properties across the visible-NIR spectrum. Nanoporous anodic alumina Gaussian photonic crystals (NAA-GPCs) are fabricated in oxalic acid electrolyte by Gaussian pulse anodization, a novel form of pulse-like anodization. The effect of the Gaussian pulse width in the anodization profile on the optical properties of these photonic crystals is assessed by systematically varying this fabrication parameter from 5 to 60 s. The optical features of the characteristic photonic stopband (PSB) of NAA-GPCs-the position of the central wavelength, full width at half-maximum, and intensity-are found to be highly dependent on the Gaussian pulse width, the angle of incidence of incoming photons, and the nanopore diameter of NAA-GPCs. The effective medium of NAA-GPCs is assessed by monitoring spectral shifts in their characteristic PSB upon infiltration of their nanoporous structure with analytical solutions of d-glucose of varying concentration (0.0125-1 M). Experimental results are validated and mechanistically described by theoretical simulations, using the Looyenga-Landau-Lifshitz effective medium approximation model. Our findings demonstrate that Gaussian pulse anodization is an effective nanofabrication approach to producing highly sensitive NAA-based PC structures with versatile and tunable PSBs across the spectral regions. The findings provide new exiting opportunities to integrate these unique PC structures into photonic sensors and other platform materials for light-based technologies.Perovskite light-emitting diodes (PeLEDs) exhibit high external quantum efficiencies (EQEs), emerging as a next-generation lighting and display technology. Nevertheless, they suffer from severe efficiency roll-off at high luminance, particularly in the case of blue and green emissions, which is one of the major bottlenecks in their industrial applications. Here, we attack this problem using a rare-earth metal, Yb, as cathode interface layer (CIL) for green PeLEDs. By adopting a new device configuration of ITO/TFB/FA-based quasi-2D perovskite/TPBi/Yb/Ag, we achieved a peak current efficiency (CE) of 22.3 cd/A with a corresponding EQE of 5.28% and a high maximum luminance of 19 160 cd/m2. Importantly, the maximum CE of 22.0 cd/A at 2000 cd/m2 slightly decreased to 16.8 cd/A at 5000 cd/m2 and maintained a still-decent value of 12.0 cd/A at a high luminance of 10 000 cd/m2, exhibiting a remarkably low efficiency roll-off. Our Yb-incorporated devices significantly outperformed the PeLEDs containing conventional CILs, including Mg and Liq, in terms of peak efficiency, efficiency roll-off, and operational lifetime. We attribute this encouraging performance to barrier-free, efficient electron injection enabled by the low work function of Yb (2.6 eV), which led to a high electron current, nearly approaching the hole current in hole-dominant PeLEDs, as confirmed by the single-carrier device measurements. In addition, we also present Yb-incorporated PeLEDs containing Cs-based quasi-2D perovskite as the emissive layer, which displayed an impressive CE of 51.3 cd/A with a corresponding EQE of 16.4% and a maximum luminance of 14 240 cd/m2, and still demonstrated a reduced efficiency roll-off comparing to that of the Liq-based equivalent. These results unveil the inspiring prospects of Yb as an efficient CIL for PeLEDs toward high efficiency with curtailed roll-off.Intumescent coatings expand upon exposure to a flame to create a protective char layer between the flame and underlying substrate. Widely used commercially, these coatings are applied notably to steel load-bearing beams, significantly extending their time to failure. Boric acid has proved to be a particularly effective additive in the formulation in these coatings, although regulatory concerns are driving an urgent need for more environmentally friendly additives. We report here the characterization of poly(acrylic acid) (PAA) for its use as a novel material in flame-retardant and intumescent coatings. Thermogravimetric analysis (TGA) and microscale combustion calorimetry (MCC) were performed on the novel flame-retardant additives to evaluate individual degradation mechanisms and heat release rates. Promising compositions were immobilized in an epoxy binder and formulated with other intumescent additives such as ammonium polyphosphate (APP) and melamine (MEL) to evaluate performance in a coating system. These formulations were then evaluated via quantitative cone calorimetry.

Autoři článku: Acevedobendsen1097 (Burns Mckay)