Brodersenfeddersen1863

Z Iurium Wiki

Verze z 18. 10. 2024, 04:19, kterou vytvořil Brodersenfeddersen1863 (diskuse | příspěvky) (Založena nová stránka s textem „© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.We demonstrate an automatic recognition strategy for teraher…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.We demonstrate an automatic recognition strategy for terahertz (THz) pulsed signals of breast invasive ductal carcinoma (IDC) based on a wavelet entropy feature extraction and a machine learning classifier. The wavelet packet transform was implemented into the complexity analysis of the transmission THz signal from a breast tissue sample. A novel index of energy to Shannon entropy ratio (ESER) was proposed to distinguish different tissues. Furthermore, the principal component analysis (PCA) method and machine learning classifier were further adopted and optimized for automatic classification of the THz signal from breast IDC sample. The areas under the receiver operating characteristic curves are all larger than 0.89 for the three adopted classifiers. The best breast IDC recognition performance is with the precision, sensitivity and specificity of 92.85%, 89.66% and 96.67%, respectively. The results demonstrate the effectiveness of the ESER index together with the machine learning classifier for automatically identifying different breast tissues. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy from intensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combines linear forward-scattering and height-dependent nonlinear back-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model's validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.This study examines the osteogenic effect of femtosecond laser bone ablation on bone mesenchymal stromal cells (BMSCs). Three-week old Sprague-Dawley (SD) rats were selected for experiments. Right tibias were ablated by a 10-W femtosecond laser (treated group), whereas left tibias were not subjected to laser ablation (control group). After ablation, BMSCs of both tibias were cultured and purified separately. see more Cell proliferation was then analyzed, as well as the expressions of RNA and several proteins (alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN)). The results suggest that femtosecond laser ablation promotes the differentiation of BMSCs and up-regulates the expression of ALP, RUNX2, and OCN, without affecting BMSC proliferation. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Laser-tissue vaporization through a fiber catheter is evolving into a major category of surgical operations to remove diseased tissue. Currently, during a surgery, the surgeon still relies on personal experience to optimize surgical techniques. Monitoring tissue temperature during laser-tissue vaporization would provide important feedback to the surgeon; however, simple and low-cost temperature sensing technology, which can be seamlessly integrated with a fiber catheter, is not available. We propose to monitor tissue temperature during laser-tissue vaporization by detecting blackbody radiation (BBR) between 1.6 µm-1.8 µm, a relatively transparent window for both water and silica fiber. We could detect BBR after passing through a 2-meter silica fiber down to ∼70°C using lock-in detection. We further proved the feasibility of the technology through ex vivo tissue studies. We found that the BBR can be correlated to different tissue vaporization levels. The results suggest that this simple and low-cost technology could be used to provide objective feedback for surgeons to maximize laser-tissue vaporization efficiency and ensure the best clinical outcomes. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Single molecule localization microscopy (SMLM) is one of the key techniques that break the classical resolution limit in optical imaging. It is based on taking multiple recordings of a sample, each showing only a sparse arrangement of spatially well separated fluorescent molecules which can be localized at nanometer precision. While localizing along the lateral directions is usually straightforward, estimating axial positions at a comparable precision is known to be much harder, which is due to the relatively large depth of focus provided by the microscope optics. Whenever a molecule is sufficiently close to the coverslip, it becomes feasible to draw additional information from near field coupling effects super-critical angle fluorescence (SAF) appears and can be exploited to boost the axial localization precision. Here we propose defocused imaging as a SMLM strategy that is capable of leveraging the information contained in SAF. We show that, regarding axial localization precision, our approach is superior to established SAF-based approaches. At the same time it is simple and can be conducted on any research-grade microscope where controlled defocusing on the order of a few hundred nanometers is possible. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.

Autoři článku: Brodersenfeddersen1863 (Sommer Koefoed)