Hewittrich5061

Z Iurium Wiki

Verze z 18. 10. 2024, 03:38, kterou vytvořil Hewittrich5061 (diskuse | příspěvky) (Založena nová stránka s textem „Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this study was to investigate associations of chronic exposure to metal fume PM2.5 in shipyard workers with health outcomes. A longitudinal study was conducted to determine the effects of metal fume PM2.5 on FeNO, urinary metals, urinary oxidative stress, inflammation, and stress hormones in workers. There were 20 office workers and 49 welding workers enrolled in this study who were followed-up for a second year. We observed that Fe, Zn, and Mn were abundant in PM2.5 to which welding workers were personally exposed, whereas PM2.5 to which office workers were personally exposed was dominated by Pb, Cu, and Zn. We observed in the first and/or second visits that urinary 8-iso-prostaglandin F2-α (PGF2α) and 8-hydroxy-2'-deoxy guanosine (8-OHdG) were significantly increased by exposure. An increase in urinary interleukin (IL)-6 and decreases in urinary serotonin and cortisol were observed in the first and/or second visits after exposure. PM2.5 was associated with decreases in urinary 8-OHdG and cortisol among workers. Next, we observed that urinary Ni, Co, and Fe had significantly increased among workers after a year of exposure. Urinary metals were associated with decreases in urinary 8-iso-PGF2α and cortisol among workers. Urinary Ni, Cu, and Fe levels were associated with an increase in urinary IL-6 and a decrease in urinary cortisol among workers. In conclusion, chronic exposure to metal fume PM2.5 was associated with inflammation and a cortisol deficiency in shipyard workers, which could associate with adrenal glands dysfunction.Environmental exposure to arsenic can cause a variety of health problems. Epidemiological and experimental studies have established a diabetogenic role for arsenic, but the mechanisms responsible for arsenic-induced impairment of insulin action are unclear. MicroRNAs (miRNAs) are involved in various metabolic disorders, particularly in the development of insulin resistance. The present study investigated whether arsenite, an active form of arsenic, induces hepatic insulin resistance and the mechanisms underlying it. After male C57BL/6J mice were exposed to arsenite (0 or 20 ppm) in drinking water for 12 months, intraperitoneal glucose tolerance tests (IPGTTs) and insulin tolerance tests (ITTs) revealed an arsenite-induced glucose metabolism disorder. Hepatic glycogen levels were lower in arsenite-exposed mice. Further, for livers of mice exposed to arsenite, miR-191 levels were higher, and protein levels of insulin receptor substrate 1 (IRS1), p-IRS1, and phospho-protein kinase B (p-AKT) were lower. Further, ues for discovering biomarkers for the development of type 2 diabetes and for prevention and treatment of arsenic poisoning.Aqueous garlic extracts (AGE) and garlic allelochemical diallyl disulfide (DADS) have been recently reported to bear bioactive properties to stimulate plant growth and development and alter defense-related physiology. We, therefore, performed a bioassay to study these chemicals as possible biostimulants for defense against Verticillium dahliae in eggplant seedlings. AGE and DADS were applied as a foliar application to the eggplants and samples were collected before and after pathogen inoculation at various intervals to analyze the defense mechanism. The obtained data revealed that with the application of AGE and DADS, the seedlings showed responses including activation of antioxidant enzymes, an abundance of chlorophyll contents, alteration of photosynthesis system, and accumulation of plant hormones compared to the control plants. Furthermore, the microscopic analysis of the AGE or DADS treated plants showed high variability in pathogen density within the root crown at 28 days post-inoculation. The low abundance of reactive oxygen species was noticed in AGE or DADS treated plants, which indicates that the plants were able to successfully encounter pathogen attacks. The AGE and DADS treated plants exhibited a lower disease severity index (32.4% and 24.8% vs 87.1% in controls), indicating successful defense against Verticillium infection. Our results were therefore among the first to address the biostimulatory effects of AGE or DADS to induce resistance in eggplant seedlings against V. dahliae and may be used to establish preparation for garlic-derived bioactive compounds to improve growth and defense responses of eggplants under-protected horticultural situations such as glasshouse or plastic tunnels system.The Water Framework Directive (WFD) was adopted in 2000 and is a common framework for water policy, management and protection in Europe. The WFD assesses specific parameters; however, it ignores indicators of ecosystem functioning and sub-individual performance. Reservoirs are strongly influenced by anthropogenic activities that promote their imbalance. AZ32 mouse Bioassays and biomarkers are useful tools to link the chemical, ecological and toxicological assessments in water quality assessments. These approaches can be complementary to WFD methodologies, allowing the detection of impacts on the ecosystem. This study evaluated if the biochemical parameters can improve the sensitivity of the biomonitoring strategy using bioassays with the standard species Daphnia magna, in the assessment of the ecological quality of water reservoirs. To this end, water samples of Portuguese reservoirs were analysed in three sampling periods (Autumn 2018 and Spring, Autumn 2019). In parallel, a physicochemical characterization of waters was performed. D. magna feeding rate assays were performed for 24 h. After exposure, metabolism, oxidative stress and lipid peroxidation biomarkers were evaluated. Feeding rate assays showed sensitivity to different reservoirs. Biomarkers showed a higher sensitivity and can therefore improve the sensitivity of the biomonitoring strategy using bioassays. Bioassays and biomarkers approach allowed to highlight potential sources of stress, more related to the quality of the seston than to chemical contamination. This work highlights the complementarity between bioassays and biomarkers to identify ecotoxicological effects of surface waters, and can be extremely useful, especially in cases where the biotic indices are difficult to establish, such as reservoirs.

Autoři článku: Hewittrich5061 (Browning Riis)