Lyonlund2747

Z Iurium Wiki

Verze z 17. 10. 2024, 15:25, kterou vytvořil Lyonlund2747 (diskuse | příspěvky) (Založena nová stránka s textem „In this paper, the influence of disinfection on structural and mechanical properties of additive manufactured (AM) parts was analyzed. All AM parts used fo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this paper, the influence of disinfection on structural and mechanical properties of additive manufactured (AM) parts was analyzed. All AM parts used for a fight against COVID19 were disinfected using available methods-including usage of alcohols, high temperature, ozonation, etc.-which influence on AM parts properties has not been sufficiently analyzed. During this research, three types of materials dedicated for were tested in four different disinfection times and two disinfection liquid concentrations. It has been registered that disinfection liquid penetrated void into material's volume, which caused an almost 20% decrease in tensile properties in parts manufactured using a glycol-modified version of polyethylene terephthalate (PETG).In this paper, the deformation and phase transformation of disordered α phase in the (α + γ) two-phase region in as-forged Ti-44Al-8Nb-(W, B, Y) alloy were investigated by hot-compression and hot-packed rolling. The detailed microstructural evolution demonstrated that the deformed microstructure was significantly affected by the deformation conditions, and the microstructure differences were mainly due to the use of a lower temperature and strain rate. Finer α grains were formed by the continuous dynamic recrystallization of α lamellae and α grains distributed around lamellar colonies. Moreover, the grooved γ grains formed by the phase transformation from α lamellae during hot rolling cooperated with and decomposed α lamellae. A microstructure evolution model was built for the TiAl alloy at 1250 °C during hot rolling.This study attempts to investigate the warpage behavior of a flip chip package-on-package (FCPoP) assembly during fabrication process. A process simulation framework that integrates thermal and mechanical finite element analysis (FEA), effective modeling and ANSYS element death-birth technique is introduced for effectively predicting the process-induced warpage. The mechanical FEA takes into account the viscoelastic behavior and cure shrinkage of the epoxy molding compound. In order to enhance the computational and modeling efficiency and retain the prediction accuracy at the same time, this study proposes a novel effective approach that combines the trace mapping method, rule of mixture and FEA to estimate the effective orthotropic elastic properties of the coreless substrate and core interposer. The study begins with experimental measurement of the temperature-dependent elastic and viscoelastic properties of the components in the assembly, followed by the prediction of the effective elastic properties of the orthotropic interposer and substrate. The predicted effective results are compared against the results of the ROM/analytical estimate and the FEA-based effective approach. Moreover, the warpages obtained from the proposed process simulation framework are validated by the in-line measurement data, and good agreement is presented. Finally, key factors that may influence process-induced warpage are examined via parametric analysis.In drilling operations, cutting forces are one of the major machinability indicators that contribute significantly towards the deviations in workpiece form and surface tolerances. The ability to predict and model forces in such operations is also essential as the cutting forces play a key role in the induced vibrations and wear on the cutting tool. More specifically, Inconel 718-a nickel-based super alloy that is primarily used in the construction of jet engine turbines, nuclear reactors, submarines and steam power plants-is the workpiece material used in the work presented here. In this study, both mechanistic and finite element models were developed. The finite element model uses the power law that has the ability to incorporate strain hardening, strain rate sensitivity as well as thermal softening phenomena in the workpiece materials. The model was validated by comparing it against an analytical mechanistic model that considers the three drilling stages associated with the drilling operation on a workpiece containing a pilot hole. Both analytical and FE models were compared and the results were found to be in good agreement at different cutting speeds and feed rates. Comparing the average forces of stage II and stage III of the two approaches revealed a discrepancy of 11% and 7% at most. This study can be utilized in various virtual drilling scenarios to investigate the influence of different process and geometric parameters.Tristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. this website Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s-1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.Powder metallurgy (PM) method is one of the most effective methods for the production of composite materials. However, there are obstacles that limit the production of magnesium matrix composites (MgMCs), which are in the category of biodegradable materials, by this method. During the weighing and mixing stages, risky situations can arise, such as the exposure of Mg powders to oxidation. Once this risk is eliminated, new MgMCs can be produced. In this study, a paraffin coating technique was applied to Mg powders and new MgMCs with superior mechanical and corrosion properties were produced using the hot pressing technique. The content of the composites consist of an Mg2Zn matrix alloy and Al2O3 particle reinforcements. After the debinding stage at 300 °C, the sintering process was carried out at 625 °C under 50 MPa pressure for 60 min. Before and after the immersion process in Hank's solution, the surface morphology of the composite specimens was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. With the hot pressing technique, composite specimens with a very dense and homogeneous microstructure were obtained. While Al2O3 reinforcement improved the mechanical properties, it was effective in changing the corrosion properties up to a certain extent (2 wt.% Al2O3). The highest tensile strength value of approximately 191 MPa from the specimen with 8 wt.% Al2O3. The lowest weight loss and corrosion rate were obtained from the specimen containing 2 wt.% Al2O3 at approximately 9% and 2.5 mm/year, respectively. While the Mg(OH)2 structure in the microstructure formed a temporary film layer, the apatite structures containing Ca, P, and O exhibited a permanent behavior on the surface, and significantly improved the corrosion resistance.To solve the problems that exist in the multi-stage forming of the straight wall parts, such as the sheet fracture, uneven thickness distribution, and the stepped feature sinking, a new forming toolpath planning and generation method for the multi-stage incremental forming was proposed based on the stretching angle. In this method, the parallel planes that were used for forming toolpath generation were constructed by using the stretching angle so that the distances between the parallel planes and the forming angles were gradually reduced. This makes the sheet material flow become changed and the thickness thinning is relieved. The software system for the toolpath generation was developed by using C++, VC++, and OpenGL library. In order to verify the feasibility of the proposed method, numerical simulation and forming experiments were carried out for the single stage forming, the traditional multi-stage forming, and multi-stage forming based on the proposed forming toolpath, using 1060 aluminum sheets. The comparative analysis of the thickness distribution, profile curve, strain curve, and sheet material flow shows that the proposed method is feasible, and the profile dimension accuracy is better, the thickness distribution is more uniform, and the sinking and bulging are significantly reduced. The formed sheet part with the stretching angle of 15° has higher dimensional accuracy, smaller bottom subsidence, and larger thickness than that of the stretching angle 5°.Palladium-modified Co-ZnAland Cu-ZnAl materials were used and found active for the catalytic oxidation of propene and propane. According to the results obtained by XRD, TPR and XPS, the zinc aluminate-supported phases are oxide phases, Co3O4, CuO and PdOx for Co-ZnAl, Cu-ZnAl and Pd-ZnAl catalysts, respectively. These reducible oxide species present good catalytic activity for the oxidation reactions. The addition of palladium to Co-ZnAl or Cu-ZnAl samples promoted the reducibility of the system and, consequently, produced a synergic effect which enhanced the activity for the propene oxidation. The PdCo-ZnAl sample was the most active and exhibited highly dispersed PdOx particles and surface structural defects. In addition, it exhibited good catalytic stability. The H2 pre-treated PdCu-ZnAl, PdCo-ZnAl and Pd-ZnAl samples showed higher activity than the original oxide catalysts, evidencing the important role of the oxidation state of the species, mainly of the palladium species, on the catalytic activity for the propene combustion. The synergic effect between metal transition oxides and PdOx could not be observed for the propane oxidation.The process of strengthening interfaces in polymer blend nanocomposites (PBNs) has been studied extensively, however a corresponding significant enhancement in the electrical and rheological properties is not always achieved. In this work, we exploit the chemical reaction between polystyrene maleic anhydride and the amine group in nylon (polyamide) to achieve an in-situ compatibilization during melt processing. Herein, nanocomposites were made by systematically adding polystyrene maleic anhydride (PSMA) at different compositions (1-10 vol%) in a two-step mixing sequence to a Polystyrene (PS)/Polyamide (aPA) blend with constant composition ratio of 2575 (PS + PSMAaPA) and 1.5 vol% carbon nanotube (CNT) loading. The order of addition of the individual components was varied in two-step mixing procedure to investigate the effect of mixing order on morphology and consequently, on the final properties. The electrical and rheological properties of these multiphase nanocomposite materials were investigated. The optical microscope images show that for PS/aPA systems, CNTs preferred the matrix phase aPA, which is the thermodynamically favorable phase according to the wettability parameter calculated using Young's equation.

Autoři článku: Lyonlund2747 (Webb Tarp)