Avilaknapp0233

Z Iurium Wiki

Verze z 17. 10. 2024, 14:30, kterou vytvořil Avilaknapp0233 (diskuse | příspěvky) (Založena nová stránka s textem „Collectively, this systematic analysis of DNA sequencing data revealed that some key genes including NF1, NF2, and CDKN2C and Hippo signaling pathway were…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Collectively, this systematic analysis of DNA sequencing data revealed that some key genes including NF1, NF2, and CDKN2C and Hippo signaling pathway were associated with spinal schwannoma, which may help improve our understanding about the genomic landscape of spinal schwannoma.Taking advantage of the high-throughput genotyping technology of Single Nucleotide Polymorphism (SNP), Genome-Wide Association Studies (GWASs) have been successfully implemented for defining the relative role of genes and the environment in disease risk, assisting in enabling preventative and precision medicine. However, current multi-locus-based methods are insufficient in terms of computational cost and discrimination power to detect statistically significant interactions with different genetic effects on multifarious diseases. Statistical tests for multi-locus interactions (≥2 SNPs) raise huge analytical challenges because computational cost increases exponentially as the growth of the cardinality of SNPs in an interaction module. In this paper, we develop a simple, fast, and powerful method, named JS-MA, based on Jensen-Shannon divergence and agglomerative hierarchical clustering, to detect the genome-wide multi-locus interactions associated with multiple diseases. From the systematical simulation, JS-MA is more powerful and efficient compared with the state-of-the-art association mapping tools. JS-MA was applied to the real GWAS datasets for two common diseases, i.e., Rheumatoid Arthritis and Type 1 Diabetes. The results showed that JS-MA not only confirmed recently reported, biologically meaningful associations, but also identified novel multi-locus interactions. Therefore, we believe that JS-MA is suitable and efficient for a full-scale analysis of multi-disease-related interactions in the large GWASs.Recent efforts have led to the development of extremely sophisticated methods for incorporating tree-wide data and accommodating uncertainty when estimating the temporal patterns of phylogenetic trees, but assignment of prior constraints on node age remains the most important factor. This depends largely on understanding substantive disagreements between specialists (paleontologists, geologists, and comparative anatomists), which are often opaque to phylogeneticists and molecular biologists who rely on these data as downstream users. This often leads to misunderstandings of how the uncertainty associated with node age minima arises, leading to inappropriate treatments of that uncertainty by phylogeneticists. In order to promote dialogue on this subject, we here review factors (phylogeny, preservational megabiases, spatial and temporal patterns in the tetrapod fossil record) that complicate assignment of prior node age constraints for deep divergences in the tetrapod tree, focusing on the origin of crown-grouping to calibrate the ages for these nodes, and other similar deep nodes in the metazoan fossil record, should consciously consider major phylogenetic uncertainty, preservational megabias, and spatiotemporal heterogeneity, preferably examining the impact of working hypotheses from multiple research groups. We emphasize a need for major tetrapod collection effort outside of classic European and North American sections, particularly from the southern hemisphere, and suggest that such sampling may dramatically change our timelines of tetrapod evolution.Multivariate analysis using mixed models allows for the exploration of genetic correlations between traits. Additionally, the transition to a genomic based approach is simplified by substituting classic pedigrees with a marker-based relationship matrix. It also enables the investigation of correlated responses to selection, trait integration and modularity in different kinds of populations. This study investigated a strategy for the construction of a marker-based relationship matrix that prioritized markers using Partial Least Squares. The efficiency of this strategy was found to depend on the correlation structure between investigated traits. In terms of accuracy, we found no benefit of this strategy compared with the all-marker-based multivariate model for the primary trait of diameter at breast height (DBH) in a radiata pine (Pinus radiata) population, possibly due to the presence of strong and well-estimated correlation with other highly heritable traits. Conversely, we did see benefit in a shining gum (Eucalyptus nitens) population, where the primary trait had low or only moderate genetic correlation with other low/moderately heritable traits. Marker selection in multivariate analysis can therefore be an efficient strategy to improve prediction accuracy for low heritability traits due to improved precision in poorly estimated low/moderate genetic correlations. Additionally, our study identified the genetic diversity as a factor contributing to the efficiency of marker selection in multivariate approaches due to higher precision of genetic correlation estimates.Variations in lipid levels are attributed partly to genetic factors. Genome-wide association studies (GWASs) mainly performed in European, African American and Asian cohorts have identified variants associated with LDL-C, HDL-C, total cholesterol (TC) and triglycerides (TG), but few studies have been performed in sub-Saharan Africans. This study evaluated the effect of single nucleotide variants (SNVs) in eight candidate loci (ABCA1, LCAT, LPL, PON1, CETP, PCSK9, MVK, and MMAB) on lipid levels among 1855 Ghanaian adults. All lipid levels were measured directly using an automated analyser. https://www.selleckchem.com/products/gw0742.html DNA was extracted and genotyped using the H3Africa SNV array. Linear regression models were used to test the association between SNVs and log-transformed lipid levels, adjusting for sex, age and waist circumference. In addition Bonferroni correction was performed to account for multiple testing. Several variants of CETP, LCAT, PCSK9, and PON1 (MAF > 0.05) were associated with HDL-C, LDL-C and TC levels at p less then 0.05. The lead variants for association with HDL-C were rs17231520 in CETP (β = 0.139, p less then 0.0001) and rs1109166 in LCAT (β = -0.044, p = 0.028). Lower LDL-C levels were associated with an intronic variant in PCSK9 (rs11806638 [β = -0.055, p = 0.027]) and increased TC was associated with a variant in PON1 (rs854558 [β = 0.040, p = 0.020]). In silico functional analyses indicated that these variants likely influence gene function through their effect on gene transcription. We replicated a strong association between CETP variants and HDL-C and between PCSK9 variant and LDL-C in West Africans, with two potentially functional variants and identified three novel variants in linkage disequilibrium in PON1 which were associated with increasing TC levels in Ghanaians.

Autoři článku: Avilaknapp0233 (Ware Funder)