Pilgaardmccallum2337

Z Iurium Wiki

Verze z 17. 10. 2024, 14:24, kterou vytvořil Pilgaardmccallum2337 (diskuse | příspěvky) (Založena nová stránka s textem „Ellipsometric modeling of serially bi-deposited glancing-angle-deposition (GLAD) coatings with a high degree of accuracy is imperative for multilayer coati…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Ellipsometric modeling of serially bi-deposited glancing-angle-deposition (GLAD) coatings with a high degree of accuracy is imperative for multilayer coatings. High-precision dispersion curves are demonstrated for a wide variety of applications.Electric field enhancement due to nodular defects within quarter-wave optical thickness multilayer mirrors is impacted by the inclusion diameter, inclusion depth, inclusion composition, nodular shape, multilayer angular bandwidth, multilayer coating materials, number of layers, angle of incidence, and polarization. In this modeling study, the electric field enhancement for surface inclusions with diameters up to 2 µm irradiated at 1064 nm at either normal or 45 deg incidence is calculated for high refractive index materials over a refractive index range of 1.7-2.3 for oxide materials commonly used in the near infrared. The thicknesses of the multilayer mirror thin films are determined for each high refractive index material by a requirement to meet a 99.5% reflection. The refractive index was found to have a significant impact on the electric field enhancement, which may offer some insight into the optimal material choice to produce high laser damage threshold mirrors.Rotational spatial plasma-enhanced atomic layer deposition has been used to deposit thin films on half-sphere lenses. Non-uniformity of less than ±1% is demonstrated for Nb2O5 deposited at 1.4 Å/s and for SiO2 deposited at 6 Å/s.Optical coatings for fusion-class laser systems pose unique challenges, given the large substrate sizes, the high intensities incident on the coatings, and the system-focusing requirements, necessitating a well-controlled optical wavefront. Significant advancements have taken place in the past 30 years to achieve the coating capabilities necessary to build laser systems such as the National Ignition Facility, Laser Mégajoule, OMEGA EP, and OMEGA. This work summarizes the coating efforts and advancements to support such system construction and maintenance.Narrowband pass filters are generally poor as narrowband angle filters. A tilted narrowband pass filter, however, is an improved narrowband angle filter, but only for rays in one plane of incidence. It is shown that a combination of two tilted narrowband pass filters will select light from all narrow angle patches in an incident cone. Furthermore, a design is presented for a narrow-angle filter for three wavelengths, enabling transmission of tristimulus color gamut images, while rejecting out-of-band sources and off-angle sources.Aimed at locating the temperature abnormal event of nuclear waste drums in a nuclear waste temporary storage repository by a Raman-based distributed temperature sensor, a principal component analysis (PCA)-based method for application is proposed. The effectiveness of the proposed method is verified in the physical simulation device of the nuclear waste drums. First, some samples of the temperature abnormal event with known location are taken as the reference samples, and their features are extracted by PCA. Then, the features of the test sample data to be located are also extracted by PCA. The Euclidean distance is used to measure the similarity between the features of the test sample and the feature of each reference sample. Finally, we find the reference sample that is most similar to a test sample, the location of which is considered the location of the temperature anomaly event for the test sample. The experimental results show that the proposed method can accurately locate the temperature abnormal event of the nuclear waste drums, and the accuracy rate can reach 96%. The method that is proposed in this paper can reliably locate the temperature abnormal event generated by the nuclear waste temporary storage repository induced by external factors such as landslides or earthquakes, and provide technical support for nuclear safety.Integrated metaphotonic devices has opened new horizons to control light-guiding properties at nanoscale; particularly interesting is the application of plasmonic nanostructures coupled to dielectric waveguides to reduce the inherent light propagation losses in metallic metamaterials. CCT251545 price In this contribution, we show the feasibility of using ion-exchanged glass waveguides (IExWg) as a platform for the efficient excitation of surface plasmon polaritons (SPP). These IExWg provide high coupling efficiency and low butt-coupling with conventional dielectric optical waveguides and fibers, overcoming the hard fabrication tunability of commonly used CMOS-guiding platforms. We present a near-field scanning optical microscopy characterization of the propagation characteristics of SPP supported in a gold nanoslab fabricated on top of an IExWg. We found that the SPP can be only be excited with the fundamental TM photonic mode of the waveguide. Thanks to the low propagation loss, low birefringence, and compatibility with optical fibers, glass waveguide technology is a promising platform for the development of integrated plasmonic devices operating at visible and near infrared wavelengths with potential applications in single molecule emission routing or biosensing devices.This paper presents research work about the design and fabrication of a 44-layer optical reflective notch filter. The performance of the fabricated notch filter was studied at normal (0°) and oblique (45°) incidence angle. In addition, the paper also discusses a three-layer broadband antireflective coating on both sides of the multilayer stack to suppress the ripples in the passband region. The thickness-modulated reflective stack of the filter was designed by using the materials Al2O3 (1.63) and SiO2 (1.46). Optimization of the multilayer stack was carried out by using the damped least-squares algorithm. The theoretical and experimental results from the ion-assisted e-beam deposited samples for single notch reflective filters are presented. Good agreement in the design and experimental results was observed when the deposition process was controlled by time of evaporation. Further, the filter was characterized for the optical properties by using a UV-VIS-NIR spectrophotometer, surface morphology and protective properties using field emission scanning electron microscopy, a coherence correlation interferometer, and water contact angle.

Autoři článku: Pilgaardmccallum2337 (McCormick Frederick)