Herskindphelps2335

Z Iurium Wiki

Verze z 17. 10. 2024, 04:34, kterou vytvořil Herskindphelps2335 (diskuse | příspěvky) (Založena nová stránka s textem „5 mM for ONPG and a Vmax of 22 μmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

5 mM for ONPG and a Vmax of 22 μmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture.Key points• Bifidobacterium adolescentis BgaC β-galactosidase was selected from human faecal metagenome.• BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition.• BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract.Our research aimed to expand the knowledge of relationships between the structure of multifunctional cationic dicephalic surfactants with a labile linker-N,N-bis[3,3-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3-(trimethylammonio)propyl]alkylamide dibromides (alkyl n-C9H19, n-C11H23, n-C13H27, n-C15H31)-and their possible mechanism of action on fungal cells using the model organism Saccharomyces cerevisiae. General studies performed on surfactants suggest that in most cases, their main mechanism of action is based on perforation of the cell membranes and cell disruption. Experiments carried out in this work with cationic dicephalic surfactants seem to modify our understanding of this issue. It was found that the investigated compounds did not cause perforation of the cell membrane and could only interact with it, increasing its permeability. The surfactants tested can probably penetrate inside the cells, causing numerous morphological changes, and contribute to disorders in the lipid metabolism of the cell resulting in the formation of lipid droplet aggregates. This research also showed that the compounds cause severe oxidative stress within the cells studied, including increased production of superoxide anion radicals and mitochondrial oxidative stress. Dicephalic cationic surfactants due to their biodegradability do not accumulate in the environment and in the future may be used as effective antifungal compounds in industry as well as medicine, which will be environmentally friendly. KEY POINTS • Dicephalic cationic surfactants do not induce disruption of the cell membrane. • Surfactants could infiltrate into the cells and cause accumulation of lipids. • Surfactants could cause acute oxidative stress in yeast cells. • Compounds present multimodal mechanism of action. Graphical abstract.In shrimp aquaculture, manufactured diets that include various supplements and alternative fishmeal ingredients are increasingly being used and their effect on the gastrointestinal (GI) microbiota studied. However, dietary effects on different shrimp GI samples are not known. We investigated how a high (HFM) or low (LFM) fishmeal diet affects bacterial communities from different sample types collected from Penaeus monodon gastrointestinal tract. Bacterial communities of the stomach, intestine tissue and intestine digesta were assessed using 16s rRNA gene sequencing. The feed pellets were also assessed as a potential source of bacteria in the GI tract. Selleckchem TPH104m Results showed substantial differences in bacterial communities between the two diets as well as between the different sample types. Within the shrimp GI samples, stomach and digesta communities were most impacted by diet, while the community observed in the intestine tissue was less affected. Proteobacteria, Firmicutes and Bacteroidetes were the main phyla observed in shrimp samples, with enrichment of Bacteroidetes and Firmicutes in the LFM fed shrimp. The feed pellets were dominated by Firmicutes and were largely dissimilar to the shrimp samples. Several key taxa were shared however between the feed pellets and shrimp GI samples, particularly in the LFM fed shrimp, indicating the pellets may be a significant source of bacteria observed in shrimp GI samples. In summary, both diet and sample type influenced the bacterial communities characterised from the shrimp GI tract. Thus, it is important to consider the sample type collected from the GI tract when investigating dietary impacts on gut bacterial communities in shrimp. KEY POINTS • Shrimp gastrointestinal communities are influenced by diet and sample type. • The low fishmeal diet enriched bacteria that aid in polysaccharide metabolism. • Feed pellets can be a source of bacteria-detected gastrointestinal tract of shrimp.Acrylic polymers (AP) are a diverse group of materials with broad applications, frequent use, and increasing demand. Some of the most used AP are polyacrylamide, polyacrylic acid, polymethyl methacrylates, and polyacrylonitrile. Although no information for the production of all AP types is published, data for the most used AP is around 9 MT/year, which gives an idea of the amount of waste that can be generated after products' lifecycles. After its lifecycle ends, the fate of an AP product will depend on its chemical structure, the environmental setting where it was used, and the regulations for plastic waste management existing in the different countries. Even though recycling is the best fate for plastic polymer wastes, few AP can be recycled, and most of them end up in landfills. Because of the pollution crisis the planet is immersed, setting regulations and developing technological strategies for plastic waste management are urgent. In this regard, biotechnological approaches, where microbial activity is involved, could be attractive eco-friendly strategies. This mini-review describes the broad AP diversity, their properties and uses, and the factors affecting their biodegradability, underlining the importance of standardizing biodegradation quantification techniques. We also describe the enzymes and metabolic pathways that microorganisms display to attack AP chemical structure and predict some biochemical reactions that could account for quaternary carbon-containing AP biodegradation. Finally, we analyze strategies to increase AP biodegradability and stress the need for more studies on AP biodegradation and developing stricter legislation for AP use and waste control. KEY POINTS • Acrylic polymers (AP) are a diverse and extensively used group of compounds. • The environmental fates and health effects of AP waste are not completely known. • Microorganisms and enzymes involved in AP degradation have been identified. • More biodegradation studies are needed to develop AP biotechnological treatments.

Autoři článku: Herskindphelps2335 (Kjeldgaard Buch)