Stagemorin9175

Z Iurium Wiki

Verze z 16. 10. 2024, 21:36, kterou vytvořil Stagemorin9175 (diskuse | příspěvky) (Založena nová stránka s textem „The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of fir…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.Synthetic ion channels are a promising technology in the medical and materials sciences because of their ability to conduct ions. Channels based on cyclodextrin, a cyclic oligomer of glucose, are of particular interest because of their nontoxicity and biocompatibility. Using molecular dynamics-based free energy calculations, this study identifies cyclodextrin channel types that are best suited to serve as synthetic ion channels. Free energy profiles show that the connectivity in the channel determines whether the channel is cation-selective or anion-selective. Furthermore, the energy barrier for ion transport is governed by the number of glucose molecules making up the cyclodextrin units of the channel. A detailed mechanism is proposed for ion transport through these channels. Findings from this study will aid in designing cyclodextrin-based channels that could be either cation-selective or anion-selective, by modifying the linkages of the channel or the number of glucose molecules in the cyclodextrin rings.In many scientific fields, there is an interest in understanding the way in which chemical networks evolve. The chemical networks which researchers focus upon have become increasingly complex, and this has motivated the development of automated methods for exploring chemical reactivity or conformational change in a "black-box" manner, harnessing modern computing resources to automate mechanism discovery. In this work, we present a new approach to automated mechanism generation which couples molecular dynamics and statistical rate theory to automatically find kinetically important reactions and then solve the time evolution of the species in the evolving network. The key to this chemical network mapping through combined dynamics and ME simulation approach is the concept of "kinetic convergence", whereby the search for new reactions is constrained to those species which are kinetically favorable at the conditions of interest. We demonstrate the capability of the new approach for two systems, a well-studied combustion system and a multiple oxygen addition system relevant to atmospheric aerosol formation.The phloeodictine-based 6-hydroxy-2,3,4,6-tetrahydropyrrolo[1,2-a]pyrimidinium structural moiety with an n-tetradecyl side chain at C-6 has been demonstrated to be a new antifungal template. Thirty-four new synthetic analogues with modifications of the bicyclic tetrahydropyrrolopyrimidinium skeleton and the N-1 side chain have been prepared and evaluated for in vitro antifungal activities against the clinically important fungal pathogens including Cryptococcus neoformans ATCC 90113, Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, and Aspergillus fumigatus ATCC 90906. Nineteen compounds (5, 21-31, 34-38, 44, and 48) showed antifungal activities against the aforementioned five fungal pathogens with minimum inhibitory concentrations (MICs) in the range 0.88-10 μM, and all were fungicidal with minimum fungicidal concentrations (MFCs) similar to the respective MIC values. Compounds 24, 36, and 48 were especially active against C. neoformans ATCC 90113 with MIC/MFC values of 1.0/1.0, 1.6/1.6, and 1.3/2.0 μM but exhibited low cytotoxicity with an IC50 > 40 μM against the mammalian Vero cells. The structure and antifungal activity relationship indicates that synthetic modifications of the phloeodictines can afford analogues with potent antifungal activity and reduced cytotoxicity, necessitating further preclinical studies of this new class of antifungal compounds.Photoinduced in situ "oxidation" of half-sandwich metal complexes to "high-valent" cationic metal complexes has been used to accelerate catalytic reactions. Here, we report the unprecedented photoinduced in situ "reduction" of half-sandwich metal [Rh(III)] complexes to "low-valent" anionic metal [Rh(II)] ate complexes, which facilitate ligand exchange with electron-deficient elements (diboron). This strategy was realized by using a functionalized cyclopentadienyl (CpA3) Rh(III) catalyst we developed, which enabled the basic group-directed room temperature ortho-C-H borylation of arenes.A benchtop solution-phase synthesis of molecular nanographenes composed of two orthogonal dibenzo[fg,ij]phenanthro[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties covalently connected through a tetrafluorobenzene ring is described. The helical arrangement of these three covalently linked molecular fragments leads to the existence of a chiral axis which gives rise to a racemic mixture, even with the molecular moieties being symmetrically substituted. X-ray diffraction studies show that both enantiomers cocrystallize in a single crystal, and the racemic mixture can be resolved by chiral HPLC. Asymmetric substitution in DBPP moieties affords a pair of diastereoisomers whose rotational isomerization has been studied by 1H NMR. Additionally, the electrochemical and photophysical properties derived from these new molecular nanographenes reveal an electroactive character and a significant fluorescent behavior.Protein-catalyzed aminoacylation of the 3'-overhang of tRNA by an aminoacyl-adenylate could not have taken place prior to the advent of genetically coded peptide synthesis, and yet the latter process has an absolute requirement for aminoacyl-tRNA. There must therefore have been an earlier nonprotein-catalyzed means of generating aminoacyl-tRNA. Here, we demonstrate efficient interstrand aminoacyl transfer from an aminoacyl phosphate mixed anhydride at the 5'-terminus of a tRNA acceptor stem mimic to the 2',3'-diol terminus of a short 3'-overhang. With certain five-base 3'-overhangs, the transfer of an alanyl residue is highly stereoselective with the l-enantiomer being favored to the extent of ∼101 over the d-enantiomer and is much more efficient than the transfer of a glycyl residue. N-Acyl-aminoacyl residues are similarly transferred from a mixed anhydride with the 5'-phosphate to the 2',3'-diol but with a different dependence of efficiency and stereoselectivity on the 3'-overhang length and sequence. Given a prebiotically plausible and compatible synthesis of aminoacyl phosphate mixed anhydrides, these results suggest that RNA molecules with acceptor stem termini resembling modern tRNAs could have been spontaneously aminoacylated, in a stereoselective and chemoselective manner, at their 2',3'-diol termini prior to the onset of protein-catalyzed aminoacylation.In micro-light-emitting diode (micro-LED) displays with color-conversion layers, a facile and efficient technology getting rid of the use of the color filters leads to a big technical leap in cost-effective fabrication. In this study, it is demonstrated that quantum dot (QD) color conversion layers can significantly suppress residual blue excitation light because of the high extinction coefficients of QDs, ∼0.1% transmittance of blue light for green and red core/shell CdSe/ZnS QD film with thickness of less than 17 μm, and produce green and red colors. Incorporation of TiO2 nanoparticles into QD solutions enhances more than 10% of the luminous intensity by the scattering effect. It is found that the suppression of QD reabsorption is essential to achieve a high color-conversion efficiency. Our results provide a clear path to a cost-effective fabrication of QD conversion layer micro-LED displays over the full range of their applications.A method of uncertainty quantification on a quantum circuit using three samples for the Rh(111)-catalyzed CO oxidation reaction is demonstrated. Three parametrized samples of a reduced, linearized microkinetic model populate a single block diagonal matrix for a quantum circuit. This approach leverages the logarithmic scaling of the number of qubits with respect to matrix size. The Harrow, Hassidim, and Lloyd (HHL) algorithm for solving linear systems is employed, and the results are compared with the classical results. This application area of uncertainty quantification in chemical kinetics can experience a quantum advantage using the method reported here, although issues related to larger systems are discussed.The practical synthesis of P-stereogenic tertiary phosphines, which have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, represents a significant challenge. see more A regio- and enantioselective hydrophosphination using cheap and ubiquitous alkynes catalyzed by a nickel complex was designed, in which the toxic and air-sensitive secondary phosphines were prepared in situ from bench-stable secondary phosphine oxides. This methodology has been demonstrated with unprecedented substrate scope and functional group compatibility to afford electronically and structurally diversified P(III) compounds. The products could be easily converted into various precursors of bidentate ligands and organocatalysts, as well as a variety of transition-metal complexes containing both P- and metal-stereogenic centers.The efficient assembly of complex aromatic structures from simple acyclic building blocks is reported. An anion-cascade union of an enoate and a conjugated imine affords cyclohexenone products, which are readily aromatized to phenols. By engaging the intermediate cyclohexenones with Grignard reagents, a facile addition/elimination proceeds yielding chiral cyclohexadienes, which are then aromatized. In a complementary approach, the cyclohexenone products are converted into enol triflates, which provides a gateway to diverse aromatic architectures following cross-couplings and aromatization steps.The hydration of hydrophobic solutes is intimately related to the spontaneous formation of cavities in water through ambient density fluctuations. Information theory-based modeling and simulations have shown that water density fluctuations in small volumes are approximately Gaussian. For limiting cases of microscopic and macroscopic volumes, water density fluctuations are known exactly and are rigorously related to the density and isothermal compressibility of water. Here, we develop a theory-interpolated gaussian fluctuation theory (IGFT)-that builds an analytical bridge to describe water density fluctuations from microscopic to molecular scales. This theory requires no detailed information about the water structure beyond the effective size of a water molecule and quantities that are readily obtained from water's equation-of-state-namely, the density and compressibility. Using simulations, we show that IGFT provides a good description of density fluctuations near the mean, that is, it characterizes the variance of occupancy fluctuations over all solute sizes. Moreover, when combined with the information theory, IGFT reproduces the well-known signatures of hydrophobic hydration, such as entropy convergence and solubility minima, for atomic-scale solutes smaller than the crossover length scale beyond which the Gaussian assumption breaks down. We further show that near hydrophobic and hydrophilic self-assembled monolayer surfaces in contact with water, the normalized solvent density fluctuations within observation volumes depend similarly on size as observed in the bulk, suggesting the feasibility of a modified version of IGFT for interfacial systems. Our work highlights the utility of a density fluctuation-based approach toward understanding and quantifying the solvation of non-polar solutes in water and the forces that drive them toward surfaces with different hydrophobicities.

Autoři článku: Stagemorin9175 (Alford Wiese)