Petersonkey8562

Z Iurium Wiki

Verze z 16. 10. 2024, 17:18, kterou vytvořil Petersonkey8562 (diskuse | příspěvky) (Založena nová stránka s textem „I have been exploring methods for education and research on drug information for 43 years. There are various approaches to drug informatics research, which…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

I have been exploring methods for education and research on drug information for 43 years. There are various approaches to drug informatics research, which include collecting, evaluating, and analyzing information to solve drug related problems, sometimes producing new information from experiments and clinical research. All are based on information science. Drug informatics is information science from the viewpoint of pharmaceuticals. In addition to basic pharmacology, knowledge and skills such as epidemiology, data science, computer science, mathematical statistics, and communication studies are indispensable for the development of drug informatics.Interactions between carbohydrate-containing glycoproteins, proteoglycans, and glycolipids on the cell surface are important biological stages for the processes of bacterial or viral infection and tumor metastasis. Moreover, supramolecular interaction by macromolecules with two-fold (C2) or three-fold (C3) geometry is one of the common interactions in many important biological responses. To develop new multivalent symmetrical bioactive compounds or leads, we designed and synthesized several new molecules with these geometries and evaluated their bioactivities in an attempt to find new types of bioactive leads that may interfere with the sugar recognition process. We evaluated bioactivities including antibacterial, antiviral, and anticancer activities of targeted molecules in vitro using biological assay systems. Among the synthesized target derivatives examined, some bivalent symmetrical derivatives showed high levels of bioactivities. In this review, the author describes the results of synthesis of oligovalent symmetrical target compounds and some interesting guiding results of evaluation of their biological activities and structure-activity relationships.Blood vessels supply oxygen and nutrients to all the cells in a living body, and provide essential transport routes for collecting waste products. For these functions, blood vessel networks should be appropriately formed in each tissue. Therefore, blood vessels are one of the earliest organs formed during the developmental process. Development of the blood vessel system promotes tissue differentiation and organ morphogenesis, allowing each organ to maintain its unique functions under changing metabolic conditions. Blood vessels have a relatively simple structure, consisting of endothelial cells covering the inner layer, and pericytes or smooth muscle cells surrounding the outside. The structure of the vascular network is extremely diverse, with blood vessels uniquely organized depending on the tissues they serve, to create tissue-specific microenvironments. How are such tissue-specific vascular environments generated? Over the years, anatomical findings have accumulated to confirm this vascular diversity. However, the molecular basis for this diversity has remained unclear. PP1 mw In the present article, we review the mechanisms of coordinated developmental control of the vascular and neural systems in the cerebral cortex from the viewpoint of the accurate expression control of vascular endothelial growth factor (VEGF) signaling, and describe future perspectives.Repair of injured tissues requires angiogenesis, the growth of new blood vessels from pre-existing ones. Cutaneous wound healing is a complex and dynamic process by which skin tissue repairs itself after injury; however, how endothelial cells and pericytes form new blood vessels during cutaneous wound angiogenesis remains unclear. We recently developed a fluorescence-based live imaging system to analyze cutaneous wound angiogenesis in adult zebrafish. Employing this system, we found that endothelial cells and pericytes remain in a quiescent state in normal skin tissue, whereas cutaneous injury immediately activates both types of cells to induce angiogenesis. At 2 days post-injury (dpi), the injured vessels elongated, and some uninjured vessels became tortuous and began to sprout new branches. Then, vessel sprouting, elongation, bifurcation, and anastomosis progressively occurred to form the tortuous and disorganized vascular networks observed at 6 dpi. Thereafter, blood vessel tortuosity gradually decreased through the regression of excessive vessels, thereby leading to the formation of well-organized vessel networks at 42 dpi. Pericytes are thought to detach from the vessel wall to promote endothelial cell sprouting upon the induction of angiogenesis. However, not only endothelial cells but also pericytes proliferated to form pericyte-covered tortuous blood vessels in response to cutaneous injury, revealing an unexpected role of pericytes in cutaneous wound angiogenesis. Therefore, this live-imaging system for adult zebrafish is anticipated to make a valuable contribution to research advancements in understanding the angiogenesis that occurs during tissue repair.The thymus is a vital organ for functional immune systems, and is the site of T cell development, which plays a central role in cellular immune defenses. Unlike other major organs, the thymus is highly dynamic in size and structure. It shrinks immediately upon bacterial infection, aging, pregnancy, mental stress, nutritional deficiency, and more. The reduction in size and function of the thymus during such biological events is called thymic involution or thymic atrophy; thymic involution is a particularly important issue because dysfunctional T cell immunity increases the risks of tumorigenesis and infectious diseases. However, the molecular mechanisms underlying thymic involution remain obscure. Our recent study indicated that blood vessels are remodeled during thymic involution that occurs upon aging, estradiol-treatment, or nutritional deficiency. We also found that prostanoid synthesis is induced during thymic involution. Treatment with non-steroidal anti-inflammatory drugs (NSAIDs), aspirin or etodolac, at least partially inhibited thymic involution-induced remodeling of the blood vessels, suggesting that prostanoids are involved in blood vessel remodeling. Our results revealed the potential role of blood vessel remodeling during thymic involution, which can lead to biological stress-induced immunosenescence.

Autoři článku: Petersonkey8562 (Hicks Lucas)