Hutchisoncho5685

Z Iurium Wiki

Verze z 14. 10. 2024, 18:26, kterou vytvořil Hutchisoncho5685 (diskuse | příspěvky) (Založena nová stránka s textem „Further studies are needed to better understand the role and neurobiology of depression, anxiety, and apathy in MCI. Copyright © 2020 Ma.The hippocampus f…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Further studies are needed to better understand the role and neurobiology of depression, anxiety, and apathy in MCI. Copyright © 2020 Ma.The hippocampus features structurally and functionally distinct anterior and posterior segments. Relatively few studies have examined how these change during aging or in response to pharmacological interventions. Alterations in hippocampal connectivity and changes in glucose regulation have each been associated with cognitive decline in aging. A distinct line of research suggests that administration of glucose can lead to a transient improvement in hippocampus-dependent memory. Here, we probe age, glucose and human cognition with a special emphasis on resting-state functional connectivity (rsFC) of the hippocampus along its longitudinal axis to the rest of the brain. Using a randomized, placebo-controlled, double-blind, crossover design 32 healthy adults (16 young and 16 older) ingested a drink containing 25 g glucose or placebo across two counter balanced sessions. They then underwent resting-state functional magnetic resonance imaging (rs-fMRI) and cognitive testing. There was a clear dissociation in the effects of glucose by age. https://www.selleckchem.com/products/ipi-549.html Magnitude change in rsFC from posterior hippocampus (pHPC) to medial frontal cortex (mPFC) was correlated with individual glucose regulation and gains in performance on a spatial navigation task. Our results demonstrate that glucose administration can attenuate cognitive performance deficits in older adults with impaired glucose regulation and suggest that increases in pHPC-mPFC rsFC are beneficial for navigation task performance in older participants. Copyright © 2020 Peters, White, Cornwell and Scholey.Objective To assess the association between low-density lipoprotein cholesterol (LDL-c) and risk of Alzheimer's disease (AD). Methods Embase, Pubmed, and Web of Science were searched until June 2019. Standard mean difference (SMD) with 95% confidence intervals (CI) was estimated using random-effects models. Results Our meta-analysis of 26 studies revealed higher levels of LDL-c in AD than that of non-dementia controls (SMD = 0.35, 95% CI 0.12-0.58, p 121 mg/dl) may be a potential risk factor for AD. This association is strong in patients aged 60-70 years, but vanishes with advancing age. Copyright © 2020 Zhou, Liang, Zhang, Xu, Lin, Zhang, Kang, Liu, Zhao and Zhao.We examined functional connectivity between the locus coeruleus (LC) and the salience network in healthy young and older adults to investigate why people become more prone to distraction with age. Recent findings suggest that the LC plays an important role in focusing processing on salient or goal-relevant information from multiple incoming sensory inputs (Mather et al., 2016). We hypothesized that the connection between LC and the salience network declines in older adults, and therefore the salience network fails to appropriately filter out irrelevant sensory signals. To examine this possibility, we used resting-state-like fMRI data, in which all task-related activities were regressed out (Fair et al., 2007; Elliott et al., 2019) and performed a functional connectivity analysis based on the time-course of LC activity. Older adults showed reduced functional connectivity between the LC and salience network compared with younger adults. Additionally, the salience network was relatively more coupled with the frontoparietal network than the default-mode network in older adults compared with younger adults, even though all task-related activities were regressed out. Together, these findings suggest that reduced interactions between LC and the salience network impairs the ability to prioritize the importance of incoming events, and in turn, the salience network fails to initiate network switching (e.g., Menon and Uddin, 2010; Uddin, 2015) that would promote further attentional processing. A chronic lack of functional connection between LC and salience network may limit older adults' attentional and executive control resources. Copyright © 2020 Lee, Kim, Katz and Mather.Background The cognitive effects of wearing a denture are not well understood. This study was conducted to clarify the effects of denture use on prefrontal and chewing muscle activities, occlusal state, and subjective chewing ability in partially edentulous elderly individuals. Methods A total of 16 partially edentulous patients were enrolled. Chewing-related prefrontal cortex and jaw muscle activities were simultaneously examined using a functional near-infrared spectroscopy (fNIRS) device and electromyography, under the conditions of unwearing, and wearing a denture. Occlusal state and masticatory score were also determined under both conditions. Using multiple linear regression analysis, associations between prefrontal and chewing activities with wearing were examined using change rates. Results Chewing rhythmicity was maintained under both conditions. As compared with unwearing, the wearing condition was associated with improved prefrontal cortex and chewing muscle activities, occlusal state in regard to force and area, and masticatory score. Also, prefrontal activities were positively associated with burst duration and peak amplitude in masseter (Mm) and temporal muscle activities, as well as masticatory scores. In contrast, prefrontal activities were negatively associated with occlusal force. Conclusion Wearing a denture induced a positive association between burst duration and peak amplitude in Mm and temporal muscle activities and prefrontal activity, which may indicate a parallel consolidation of prefrontal cortex and rhythmical chewing activities, as well as masticatory scores. On the other hand, denture use induced a negative association of occlusal force with prefrontal activities, which might suggest that prefrontal compensative associations for the physiocognitive acquisition depended on biomechanical efficacy gained by wearing a denture. Copyright © 2020 Narita, Ishii, Iwaki, Kamiya, Okubo, Uchida, Kantake and Shibutani.Introduction Alzheimer's disease (AD) is a progressive neurodegenerative dementia with the key pathological hallmarks amyloid-beta deposition and neurofibrillary tangles composed of hyperphosphorylated tau. microRNAs (miRNAs) are small non-coding RNAs that contribute to the pathogenesis of AD. In this study, we investigated the effect of the loss of miR-369 on the phosphorylation of tau protein and the activation of the kinases Fyn and serine/threonine-protein kinase 2 (SRPK2) as the upstream molecules facilitating tau phosphorylation in miR-369 knockout 3xTg-AD mice. Methods We generated miR-369 knockout 3xTg-AD mice and investigated their cognitive behaviors by maze tests. Real-time qPCR, western blot, and immunohistochemistry were performed to evaluate the expression of the miR-369 gene, phosphorylation of tau protein, and activation of Fyn and SRPK2. Luciferase reporter assays were applied to confirm the predicted targets of miR-369. Results Knocking out miR-369 in 3xTg AD mice aggravated cognitive impairment, promoted hyperphosphorylation of tau, and upregulated Fyn and SRPK2.

Autoři článku: Hutchisoncho5685 (Tate Skytte)