Rivasdean7554

Z Iurium Wiki

Verze z 14. 10. 2024, 15:38, kterou vytvořil Rivasdean7554 (diskuse | příspěvky) (Založena nová stránka s textem „In this work, we report a family of co-halogenated two-dimensional hybrid perovskites (2DHPs) based on phenethylammonium lead halogen ((PEA)2Pb(Cl/Br)4) in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this work, we report a family of co-halogenated two-dimensional hybrid perovskites (2DHPs) based on phenethylammonium lead halogen ((PEA)2Pb(Cl/Br)4) in which the organic cation-site (PEA) is substituted with halogen at the para-site, namely the formation of 4-halophenethylamine (X-p-PEA) (X = Cl, Br; p para-site). The organic cations are regulated by introducing halogen ions at the para-site of the benzene ring to promote the structural distortion of the lead halide octahedral inorganic layer. Furthermore, (X-p-PEA) causes a shift in the energy band distribution of 2DHPs. In this case, the photoluminescence competition of free excitons (FEs) and self-trapped excitons (STEs) changes the microscopic relaxation process of excitons. In addition, we found that (Br-p-PEA) can increase the photoluminescence quantum yield (PLQY). At the same time, we regulate the halogen-site of perovskites from lead-chloride perovskites (LCPs) to lead bromine perovskites (LBPs), achieving emission from white light to blue light. Therefore, the co-halogenation regulation strategy of organic cation-site and halogen-site can effectively regulate the photoluminescence wavelength and improve the PLQY. This is of great significance for the development of perovskite materials with specific optoelectronic applications.The adsorption of nonionic polymers to cellulose is of large importance both in the plant cell wall during synthesis and for the development of sustainable materials from wood. Here, the thermodynamics of adsorption of the polysaccharide xyloglucan (XG) to both native and chemically modified cellulose with carboxyl groups was investigated using molecular dynamics simulations. The free energy of adsorption was calculated as the potential of mean force between an XG oligomer and model cellulose surfaces in a range of temperatures from 298 K to 360 K. It was found that the adsorption near room temperature is an endothermic process dominated by the entropy of released interfacial water molecules. This was corroborated by quantitative assessment of the absolute entropy per water molecule both at the interface and in the bulk. In the case of native cellulose, the adsorption became exothermic at higher temperatures, while the relatively strong interactions between water and the charged groups of the oxidized cellulose impede such a transition. The results also indicate that the extraction of strongly associated hemicelluloses would be facilitated by low temperature.Construction of strong metal-support interaction (SMSI) is of fundamental interest in the preparation of supported metal nanoparticle catalysts with enhanced catalytic activity. Herein, we report a facile in situ electrochemical redox tuning approach to build strong interactions between metals and supports. As for a typical example, a composite electrocatalyst of Pd-Co hybrid nanoparticles directly developed on Ni substrate is found to follow a distinct surface self-reconstruction process in alkaline media via an in situ electrochemical redox procedure, which results in structural transition from the original nanoparticles (NPs) to nanosheets (NSs) coupled with a phase transformation of the Co component, Co → CoO/Co(OH)2. The SMSI is observed in the electrochemically tuned Pd-Co hybrid system and leads to significantly enhanced catalytic activity for methanol oxidation reaction (MOR) due to the modified atomic/electronic structure, increased surface area, and more exposed electroactive sites. learn more Compared with commercial Pd/C catalyst, the electrochemically tuned Pd-Co hybrid catalyst with SMSI exhibits superior catalytic activity (2330 mA∙mgPd-1) and much better stability (remains 503 mA∙mgPd-1 after 1000 cycles and 172 mA∙mgPd-1 after 5000 s), and therefore has great potential in practical applications.A new type of carbon dots that emit blue emission in aqueous state while cyan emission in solid state was synthesized by a simple hydrothermal method. The photoluminescence quantum yield of the carbon dots in aqueous state and solid state is 7.6% and 29.2%, respectively. The enhanced and red-shifted emission observed in solid state carbon dots is ascribed to surface state change caused by aggregation. The occurrence of surface state change in solid state carbon dots has been evidenced by concentration dependent steady-state photoluminecence spectra and time-resolved luminescence decay. Surface functionalization by Na+ is beneficial for carbon dots to resist luminescence quenching in solid state. A proof-of-concept study was performed to demonstrate the potential application of the obtained carbon dots as inks for anti-counterfeiting and printing high quality fluorescent images.Enzymes are highly significant catalysts, essential to biological systems, and a source of inspiration for the design of artificial enzymes. Although many models have been developed describing enzymatic catalysis, a deeper understanding of these biocatalysts remains a major challenge. Herein we detail the formation, characterization, performance, and catalytic mechanisms of a series of bio-inspired supramolecular polymer/surfactant complexes acting as artificial enzymes. The supramolecular complexes were characterized and exhibited exceptional catalytic efficiency for the dephosphorylation of an activated phosphate diester, the reaction rate being highly responsive to (a) pH, (b) surfactant concentration, and (c) the length of the hydrophobic chain of the surfactant. Under optimal conditions (at pH > 8 for the more hydrophobic systems and at pre-micellar concentrations), enzyme-like rate enhancements of up to 6.0 × 109-fold over the rate of the spontaneous hydrolysis reaction in water were verified. The catalytic performance is a consequence of synergy between the hydrophobicity of the aggregates and the catalytic functionalities of the polymer and the catalytic mechanism is modulated by the nature of the hydrophobic pockets of these catalysts, changing from a general base mechanism to a nucleophilic mechanism as the hydrophobicity increases. Taken as a whole, the present results provide fundamental insights, through an understandable model, which are highly relevant to the design of novel bioinspired enzyme surrogates with multifunctional potentialities for future practical applications.

Autoři článku: Rivasdean7554 (Stage Le)