Bendtsenzhang8738

Z Iurium Wiki

Verze z 14. 10. 2024, 13:23, kterou vytvořil Bendtsenzhang8738 (diskuse | příspěvky) (Založena nová stránka s textem „Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. SU056 Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer. Copyright © 2020 Sosa Ponce, Moradi-Fard, Zaremberg and Cobb.Syndactyly is one of the most frequent hereditary limb malformations with clinical and genetical complexity. Autosomal dominant syndactyly type IV (SD4) is a rare form of syndactyly, caused by heterozygous mutations in a sonic hedgehog (SHH) regulatory element (ZRS) which resides in intron 5 of the LMBR1 gene on chromosome 7q36.3. SD4 is characterized by complete cutaneous syndactyly of the fingers, accompanied by cup-shaped hands due to flexion of the fingers and polydactyly. Here, for the first time, we reported a large Chinese family from Fujian province, manifesting cup-shaped hands consistent with SD4 and intrafamilial heterogeneity in clinical phenotype of tibial and fibulal shortening, triphalangeal thumb-polysyndactyly syndrome (TPTPS). We identified a novel duplication of ∼222 kb covering exons 2-17 of the LMBR1 gene in this family by sub-exome target sequencing. This case expands our new clinical understanding of SD4 phenotype and again confirms the feasibility to detect copy number variation by sub-exome target sequencing. Copyright © 2020 Shi, Huang, Jiang, Huang, Fu, Mao, Wei, Cui, Lin, Cai, Yang, Wang and Wu.Interactions among genomic loci have often been overlooked in genome-wide association studies, revealing the combinatorial effects of variants on phenotype or disease manifestation. Unexplained genetic variance, interactions among causal genes of small effects, and biological pathways could be identified using a network biology approach. The main objective of this study was to determine the genome-wide epistatic variants affecting feed efficiency traits [feed conversion ratio (FCR) and residual feed intake (RFI)] based on weighted interaction SNP hub (WISH-R) method. Herein, we detected highly interconnected epistatic SNP modules, pathways, and potential biomarkers for the FCR and RFI in Duroc and Landrace purebreds considering the whole population, and separately for low and high feed efficient groups. Highly interacting SNP modules in Duroc (1,247 SNPs) and Landrace (1,215 SNPs) across the population and for low feed efficient (Duroc-80 SNPs, Landrace-146 SNPs) and high feed efficient group (Duroc-198 SNPs,ified here in a larger cohort would help to establish a framework for modelling epistatic variance in future methods of genomic prediction, increasing the accuracy of estimated genetic merit for FE and helping the pig breeding industry. Copyright © 2020 Banerjee, Carmelo and Kadarmideen.Background Several markers have been reported to be specific for hepatic cancer stem cells (HCSCs), which is usually thought to be highly associated with poor clinical outcomes. Tumor-infiltrating immune cells act as an important factor for oncogenesis. Little is known about the correlation of HCSC markers to prognosis and immune infiltrates. Methods Expression of HCSC markers was analyzed through Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA) and Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB), respectively. The prognostic effect of HCSC markers was evaluated using Kaplan-Meier plotter in association with different tumor stages, risk factors, and gender. The correlation of HCSC markers to tumor-infiltrating immune cells was tested by Tumor Immune Estimation Resource (TIMER). HCSC markers related gene sets were investigated by GEPIA, with their biological functions being analyzed by Cytoscape software. Results The expression level of 10 HCSC markers in HCC was higl infection or alcohol intake with increased SOX12 expression had poorer prognosis. Therefore, HCSCs markers likely play an important role in tumor related immune infiltration and SOX12 might be a potential therapeutic target in patients with HCC. Copyright © 2020 Sang, Wu, Wu, Lin, Li, Zhao, Chen and Xu.Plant-associated microbial communities play a central role in the plant response to biotic and abiotic stimuli, improving plant fitness under challenging growing conditions. Many studies have focused on the characterization of changes in abundance and composition of root-associated microbial communities as a consequence of the plant response to abiotic factors such as altered soil nutrients and drought. However, changes in composition in response to abiotic factors are still poorly understood concerning the endophytic community associated to the phyllosphere, the above-ground plant tissues. In the present study, we applied high-throughput 16S rDNA gene sequencing of the phyllosphere endophytic bacterial communities colonizing wild Populus trichocarpa (black cottonwood) plants growing in native, nutrient-limited environments characterized by hot-dry (xeric) riparian zones (Yakima River, WA), riparian zones with mid hot-dry (Tieton and Teanaway Rivers, WA) and moist (mesic) climates (Snoqualmie, Skykomish and Skagit Rivers, WA).

Autoři článku: Bendtsenzhang8738 (Hatcher Korsholm)