Gadegaardcarstens8952

Z Iurium Wiki

Verze z 13. 10. 2024, 14:58, kterou vytvořil Gadegaardcarstens8952 (diskuse | příspěvky) (Založena nová stránka s textem „While polyphenol-based coating has been regarded as a promising alternative to functionalize membrane surface, it usually suffers from problems of low-effi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

While polyphenol-based coating has been regarded as a promising alternative to functionalize membrane surface, it usually suffers from problems of low-efficient procedure and low utilization rate of the polyphenolic compounds, hindering its large-scale implementations. To solve these problems, this study provided a first report on inkjet printing of polyphenols (catechol (CA) or tannic acid (TA)) and sodium periodate (SP) on a polyvinylidene fluoride (PVDF) membrane to improve membrane performance. A series of analyses showed the efficient formation of homogenous films on the PVDF membrane surface and the improvement of hydrophilicity by the inkjet printing technique. The PVDF membranes decorated with the optimized polyphenolic coating exhibited a promising oil/water separation efficiency (higher than 99%) with a high average water permeation flux of 5.2 times higher than that of the pristine membrane. Meanwhile, the modified membranes illustrated a good stability under acidic conditions (pH = 2-7). The novel method proposed in this study is facile, cost-saving and environment-friendly. The advantages of the proposed method and the modified membranes demonstrated the great significance of the proposed method in practical applications. The coupling between ferrous iron and methane production has important global implications, with iron ions acting as electron acceptors for anaerobic oxidation of methane (AOM) and inhibitors of methanogenesis in different environments, including floodplain soils. In this sense, we analyzed the relationship between Fe(II) concentration and methane production in soil layers collected at 0-15 cm and 15-30 cm from flooded-forest and -agroforestry in Amazonian clear water floodplain incubated in anaerobic batch reactors using acetate, formate and glucose as organic sources. High throughput sequencing of archaeal and bacterial 16S rRNA genes was employed to assess the abundance and composition of the active methanogenic and methanotrophic microbial groups potentially involved in Fe(III)-dependent AOM in the soil used as inoculum. Positive correlation was revealed between Fe(II) concentration and methane production, with higher accumulation of Fe(II) in incubated soil layer collected at 0-15 cm in both forest and agroforestry sites for all the three organic sources. The accumulation of Fe(II) in the incubated soil evidenced the oxidation of Fe(III) potentially by Methanobacterium, Desulfobulbus and 'Candidatus methanoperedens nitroreducens' living in anaerobic condition at this soil layer. The results point out to the microbial ferric iron reduction as an important potential pathway for anaerobic organic matter decomposition in Amazonian floodplain, evidencing methanogenesis suppression by Fe(III) reduction in flooded-forest and -agroforestry in Amazonian clear water river floodplain. In this study, in-situ Fenton oxidation was used for the de-complexation and degradation of tannin-Cr(III) complexes. Cr(III) can be oxidized into free Cr(VI) under the effect of ·OH and oxidation products of tannin can be used as reductant for Cr(VI) to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). GSK-3 phosphorylation Thus, it is crucial to investigate the interactions of Cr(III) with tannin derived oxidation products due to negligible accumulation of Cr(VI) during Fenton oxidation treatment. Here, sequential filtration/ultrafiltration was applied to reveal the distribution characteristics of TOC and Cr fractions during the oxidation of tannin-Cr(III). As the increase of colloidal size of tannic acid products, residual TOC and Cr mainly distribute in larger size range after the oxidation of tannin-Cr(III) which can be ascribed to re-complexation between oxidation products and Cr(III). Besides, analytical results indicate that carboxyl group and hydroxyl group in oxidation products may cause the re-complexation of Cr(III), resulting in the formation of highly conjugated materials containing Cr(III). It can be concluded that due attention should be paid to the efficient removal technology and mechanism for polymer-Cr complexes, as well as the oxidation intermediates in the role of conversion and removal of Cr species. The pipe deposits from water distribution network are iron-wastes, which could be used as a catalyst of advanced oxidation processes (AOPs). This paper prepared one main composition (α-FeOOH) of pipe deposits and compared the difference of chloramphenicol (CAP) degradation by α-FeOOH-activated hydrogen peroxide/persulfate and α-FeOOH-activated hydrogen peroxide/peroxymonosulfate with hydroxylamine assistance. Several key affecting factors were investigated. The results revealed that the double-oxidant system has a synergy effect in CAP degradation process. The hydroxyl radicals were identified as the predominant radicals in two different degradation processes via electron paramagnetic resonance (EPR) technique. The possible degradation pathways and products were confirmed by liquid chromatography-mass spectrometry (LC-MS). This study provided a theoretic research for pollutant removal by taking full advantage of pipe deposits and advance the development of water quality security in water distribution network in future. This work aimed to quantify the contribution of electrocoagulation(EC) mechanisms on emulsified oil removal from polymer-flooding sewage (PFS), and also to quantitatively compare the performance of EC, anode-electrocoagulation(AEC) and chemical coagulation(CC) on PFS treatment. An apparatus which introduced the salt bridge was proposed to help separate the anode and cathode. To quantify the contribution of coagulation and oxidation individually, the EDTA, a chemical addictive which can inhibit the ability of Al3+ was added to shield the effect of coagulation. The experimental results show that in the PFS treatment by EC method, about 80% of emulsified oil in anode zone was removed by coagulation while only 11%-13% was oxidized; In cathode zone, about 13%-14% of the oil was removed by flotation. Besides, the results suggest that the separation of anode and cathode not only result in the low demulsification efficiency but also generated the fragile flocs. During the comparison and contrast of purification performance of EC, AEC and CC, the effects of treatment time and current densities(aluminum doses) on oil removal was investigated, the pH and absorption spectra evolution over time were also analyzed.

Autoři článku: Gadegaardcarstens8952 (Agger Bendtsen)