Wittschaefer1349

Z Iurium Wiki

Verze z 13. 10. 2024, 13:11, kterou vytvořil Wittschaefer1349 (diskuse | příspěvky) (Založena nová stránka s textem „Recently, the keywords "NLRP3" and "extracellular vesicles" appeared most frequently. Besides, researches on COVID-19-induced ALI related to macrophages se…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Recently, the keywords "NLRP3" and "extracellular vesicles" appeared most frequently. Besides, researches on COVID-19-induced ALI related to macrophages seemed to be the hotspot recently. This bibliometric study revealed that publications related to macrophages in ALI tend to increase continuously. China was a big producer and the USA was an influential country in this field. Most studies were mainly centered on basic researches in the past decade, and pathways associated with the regulatory role of macrophages in inhibiting and attenuating ALI have become the focus of attention in more recent studies. What is more, our bibliometric analysis showed that macrophages play an important role in COVID-19-induced ALI and may be a target for the treatment of COVID-19.

The prophylactic vaccination of COVID-19 mRNA vaccines is the first large-scale application of this kind in the human world. Over 1.8 million doses of the COVID-19 vaccine had been administered in the US until December 2020, and around 0.2% submitted AE reports to the Vaccine Adverse Event Reporting System (VAERS). This study aimed to evaluate the AEs following immunization (AEFIs) and analyze the potential associations based on the information from the VAERS database.

We searched the VAERS database recorded AEFIs after COVID-19 vaccines in December 2020. After data mapping, we summarized demographic and clinical features of reported cases. Fisher exact test was used to comparing the clinical characteristics among AE groups with an anaphylactic response, concerning neurological disorders anddeath.

VAERS reported 3,908 AEFIs of COVID-19 vaccines in December 2020. Most (79.68%) were reported after the first dose of the vaccine. Among the reported cases, we found that general disorders (48.80%), nervous sy Such vaccine recipients need further evaluation and monitor.

AEFIs of COVID-19 mRNA vaccines were generally non-severe local or systemic reactions. A prior allergy history is the risk factor for anaphylaxis, while a history of anxiety may link with severe neurological AEs. Such vaccine recipients need further evaluation and monitor.Resolvin D1 (RvD1) prompts inflammation resolution and regulates immune responses. We explored the effect of RvD1 on systemic lupus erythematosus (SLE) and investigated the correlation between RvD1 and Treg/Th17 imbalance, which is one of the major factors contributing to the pathogenesis of disease. SLE patients and healthy controls were recruited to determine plasma RvD1 levels. MRL/lpr lupus model was used to verify rescue of the disease phenotype along with Treg/Th17 ratio. Purified naive CD4+ T cells were used to study the effect of RvD1 on Treg/Th17 differentiation in vitro. Furthermore, small RNA Sequencing and transfection were performed successively to investigate downstream microRNAs. The result showed that the RvD1 level was significantly lower in active SLE patients compared with inactive status and controls. Moreover, The SLE disease activity index (SLEDAI) score had a significant negative correlation with RvD1 level. As expected, RvD1 treatment ameliorated disease phenotype and inflammatory response, improved the imbalanced Treg/Th17 in MRL/lpr mice. In addition, RvD1 increased Treg while reduced Th17 differentiation in vitro. Furthermore, miR-30e-5p was verified to modulate the Treg/Th17 differentiation from naïve CD4+ T cells as RvD1 downstream microRNA. In conclusion, RvD1 effectively ameliorates SLE progression through up-regulating Treg and down-regulating Th17 cells via miR-30e-5p.Obesity is the largest risk factor for the development of chronic diseases in industrialized countries. Excessive fat accumulation triggers a state of chronic low-grade inflammation to the detriment of numerous organs. To address this problem, our lab has been examining the anti-inflammatory mechanisms of two human milk oligosaccharides (HMOs), lacto-N-fucopentaose III (LNFPIII) and lacto-N-neotetraose (LNnT). LNFPIII and LNnT are HMOs that differ in structure via presence/absence of an α1,3-linked fucose. We utilize LNFPIII and LNnT in conjugate form, where 10-12 molecules of LNFPIII or LNnT are conjugated to a 40 kDa dextran carrier (P3DEX/NTDEX). Previous studies from our lab have shown that LNFPIII conjugates are anti-inflammatory, act on multiple cell types, and are therapeutic in a wide range of murine inflammatory disease models. The α1,3-linked fucose residue on LNFPIII makes it difficult and more expensive to synthesize. Therefore, we asked if LNnT conjugates induced similar therapeutic effects to LNfocus on identifying the receptors for these conjugates and delineating the mechanisms by which P3DEX and NTDEX exert their effects.Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that especially plays an important role in innate immune. However, the roles of LECT2 in the immune response of the economically important fish Nile tilapia (Oreochromis niloticus) against bacterial infection remains unclear. In this study, a lect2 gene from Nile tilapia (On-lect2) was identified, and its roles in the fish's immune response against bacterial infection were determined and characterised. On-lect2 contains an open reading frame of 456 bp that encodes a peptide of 151 amino acids, as well as the conservative peptidase M23 domain. On-LECT2 is 62%-84% identical to other fish species and about 50% identical to mammals. The highest transcriptional level of On-lect2 was detected in the liver, whereas the lowest levels were detected in the other tissues. Moreover, the On-LECT2 protein is located mainly in the brain and head kidney. The transcriptional levels of On-lect2 substantially increased in the head kidney, brain, liver and spleen after Streptococcus agalactiae infection. Knockdown On-lect2 led to higher mortality due to liver necrosis or haemorrhage and splenomegaly. In vitro analysis indicated that the recombinant protein of On-LECT2 improved phagocytic activity of head kidney-derived macrophages. In vivo challenge experiments revealed several functions of On-LECT2 in the immune response of Nile tilapia against bacterial infection, including promotion of inflammation, reduction of tissue damages and improvement of survival rate.

Autoinflammatory phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) is a rare autoinflammatory disease caused by gain-of-function mutations in the

gene. Here we report a rare case of APLAID patient carrying a novel heterozygous missense

I169V mutation with gangrenous pyoderma and concomitant high serum immunoglobulin (Ig) E level.

The patient was diagnosed as APLAID and has been treated in our department. His phenotype and genotype were carefully documented and studied. We also conducted a comprehensive literature review on APLAID.

A 23-year-old Chinese Han man presented with recurrent fever for 18 years and vesiculopustular rashes for 9 years, along with chronic bronchitis, leukocytosis, increased C-reactive protein, immunodeficiency and high serum IgE. Skin biopsy showed chronic inflammatory cells infiltration. A paternal heterozygous missense variant in exon 6 of the

gene p. I169V was identified. His vesiculopustular and IgE level responded to medium dAID.

The rarity and diversity of APLAID make it difficult to be diagnosed. Our study reported the first case of APLAID with gangrenous pyoderma and concomitant high IgE carrying a novel PLCG2 mutation, which may expand the clinical phenotype and genotype of APLAID.Tropheryma whipplei is the agent of Whipple's disease, a rare systemic disease characterized by macrophage infiltration of the intestinal mucosa. The disease first manifests as arthralgia and/or arthropathy that usually precede the diagnosis by years, and which may push clinicians to prescribe Tumor necrosis factor inhibitors (TNFI) to treat unexplained arthralgia. However, such therapies have been associated with exacerbation of subclinical undiagnosed Whipple's disease. The objective of this study was to delineate the biological basis of disease exacerbation. We found that etanercept, adalimumab or certolizumab treatment of monocyte-derived macrophages from healthy subjects significantly increased bacterial replication in vitro without affecting uptake. Interestingly, this effect was associated with macrophage repolarization and increased rate of apoptosis. Further analysis revealed that in patients for whom Whipple's disease diagnosis was made while under TNFI therapy, apoptosis was increased in duodenal tissue specimens as compared with control Whipple's disease patients who never received TNFI prior diagnosis. In addition, IFN-γ expression was increased in duodenal biopsy specimen and circulating levels of IFN-γ were higher in patients for whom Whipple's disease diagnosis was made while under TNFI therapy. Taken together, our findings establish that TNFI aggravate/exacerbate latent or subclinical undiagnosed Whipple's disease by promoting a strong inflammatory response and apoptosis and confirm that patients may be screened for T. whipplei prior to introduction of TNFI therapy.

Tryptophan catabolites (TRYCATs) are implicated in the pathophysiology of mood disorders by mediating immune-inflammation and neurodegenerative processes. We performed a meta-analysis of TRYCAT levels in bipolar disorder (BD) patients compared to healthy controls.

A systematic literature search in seven electronic databases (PubMed, Embase, Web of Science, Cochrane, Emcare, PsycINFO, Academic Search Premier) was conducted on TRYCAT levels in cerebrospinal fluid or peripheral blood according to the PRISMA statement. A minimum of three studies per TRYCAT was required for inclusion. Standardized mean differences (SMD) were computed using random effect models. Subgroup analyses were performed for BD patients in a different mood state (depressed, manic). The methodological quality of the studies was rated using the modified Newcastle-Ottawa Quality assessment Scale.

Twenty-one eligible studies were identified. Peripheral levels of tryptophan (SMD = -0.44;

< 0.001), kynurenine (SMD = - 0.3;

= 0.001) and kynurenic acid (SMD = -.45;

= < 0.001) were lower in BD patients versus healthy controls. In the only three eligible studies investigating TRP in cerebrospinal fluid, tryptophan was not significantly different between BD and healthy controls. The methodological quality of the studies was moderate. Subgroup analyses revealed no significant difference in TRP and KYN values between manic and depressed BD patients, but these results were based on a limited number of studies.

The TRYCAT pathway appears to be downregulated in BD patients. There is a need for more and high-quality studies of peripheral and central TRYCAT levels, preferably using longitudinal designs.

The TRYCAT pathway appears to be downregulated in BD patients. There is a need for more and high-quality studies of peripheral and central TRYCAT levels, preferably using longitudinal designs.Klebsiella pneumoniae is a common pathogen in human sepsis. The emergence of multidrug-resistant K. pneumoniae strains represents a major clinical challenge in nosocomial and community acquired infections. The long pentraxin PTX3, a key component of humoral innate immunity, is involved in resistance to selected pathogens by promoting opsonophagocytosis. selleck chemicals llc We investigated the relevance of PTX3 in innate immunity against K. pneumoniae infections using Ptx3 -/- mice and mouse models of severe K. pneumoniae infections. Local and systemic PTX3 expression was induced following K. pneumoniae pulmonary infection, in association with the up-regulation of TNF-α and IL-1β. PTX3 deficiency in mice was associated with higher bacterial burden and mortality, release of pro-inflammatory cytokines as well as IL-10 in the lung and systemically. The analysis of the mechanisms responsible of PTX3-dependent control of K. pneumoniae infection revealed that PTX3 did not interact with K. pneumoniae, or promote opsonophagocytosis. The comparison of susceptibility of wild-type, Ptx3-/-, C3-/- and Ptx3-/- /C3-/- mice to the infection showed that PTX3 acted in a complement-independent manner.

Autoři článku: Wittschaefer1349 (Borre Hammer)