Hanleyduggan4788

Z Iurium Wiki

Verze z 11. 10. 2024, 18:21, kterou vytvořil Hanleyduggan4788 (diskuse | příspěvky) (Založena nová stránka s textem „In order to explore the knowledge base, research hotspot, development status, and future research direction of healthcare research based on information the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In order to explore the knowledge base, research hotspot, development status, and future research direction of healthcare research based on information theory and complex science, a total of 3031 literature data samples from the core collection of Web of Science from 2003 to 2019 were selected for bibliometric analysis. HistCite, CiteSpace, Excel, and other analytical tools were used to deeply analyze and visualize the temporal distribution, spatial distribution, knowledge evolution, literature co-citation, and research hotspots of this field. This paper reveals the current development of healthcare research field based on information theory and science of complexity, analyzes and discusses the research hotspots and future development that trends in this field, and provides important knowledge support for researchers in this field for further relevant research.Information theory provides a mathematical foundation to measure uncertainty in belief. Belief is represented by a probability distribution that captures our understanding of an outcome's plausibility. Information measures based on Shannon's concept of entropy include realization information, Kullback-Leibler divergence, Lindley's information in experiment, cross entropy, and mutual information. We derive a general theory of information from first principles that accounts for evolving belief and recovers all of these measures. Rather than simply gauging uncertainty, information is understood in this theory to measure change in belief. We may then regard entropy as the information we expect to gain upon realization of a discrete latent random variable. This theory of information is compatible with the Bayesian paradigm in which rational belief is updated as evidence becomes available. Furthermore, this theory admits novel measures of information with well-defined properties, which we explored in both analysis and experiment. This view of information illuminates the study of machine learning by allowing us to quantify information captured by a predictive model and distinguish it from residual information contained in training data. We gain related insights regarding feature selection, anomaly detection, and novel Bayesian approaches.Drought is one of the most typical and serious natural disasters, which occurs frequently in most of mainland China, and it is crucial to explore the evolution characteristics of drought for developing effective schemes and strategies of drought disaster risk management. Based on the application of Cloud theory in the drought evolution research field, the cloud transformation algorithm, and the conception zooming coupling model was proposed to re-fit the distribution pattern of SPI instead of the Pearson-III distribution. Then the spatio-temporal evolution features of drought were further summarized utilizing the cloud characteristics, average, entropy, and hyper-entropy. Lastly, the application results in Northern Anhui province revealed that the drought condition was the most serious during the period from 1957 to 1970 with the SPI12 index in 49 months being less than -0.5 and 12 months with an extreme drought level. The overall drought intensity varied with the highest certainty level but lowest stability level in winter, but this was opposite in the summer. learn more Moreover, drought hazard would be more significantly intensified along the elevation of latitude in Northern Anhui province. The overall drought hazard in Suzhou and Huaibei were the most serious, which is followed by Bozhou, Bengbu, and Fuyang. Drought intensity in Huainan was the lightest. The exploration results of drought evolution analysis were reasonable and reliable, which would supply an effective decision-making basis for establishing drought risk management strategies.Sources that generate symbolic sequences with algorithmic nature may differ in statistical complexity because they create structures that follow algorithmic schemes, rather than generating symbols from a probabilistic function assuming independence. In the case of Turing machines, this means that machines with the same algorithmic complexity can create tapes with different statistical complexity. In this paper, we use a compression-based approach to measure global and local statistical complexity of specific Turing machine tapes with the same number of states and alphabet. Both measures are estimated using the best-order Markov model. For the global measure, we use the Normalized Compression (NC), while, for the local measures, we define and use normal and dynamic complexity profiles to quantify and localize lower and higher regions of statistical complexity. We assessed the validity of our methodology on synthetic and real genomic data showing that it is tolerant to increasing rates of editions and block permutations. Regarding the analysis of the tapes, we localize patterns of higher statistical complexity in two regions, for a different number of machine states. We show that these patterns are generated by a decrease of the tape's amplitude, given the setting of small rule cycles. Additionally, we performed a comparison with a measure that uses both algorithmic and statistical approaches (BDM) for analysis of the tapes. Naturally, BDM is efficient given the algorithmic nature of the tapes. However, for a higher number of states, BDM is progressively approximated by our methodology. Finally, we provide a simple algorithm to increase the statistical complexity of a Turing machine tape while retaining the same algorithmic complexity. We supply a publicly available implementation of the algorithm in C++ language under the GPLv3 license. All results can be reproduced in full with scripts provided at the repository.Electrostatic analysers measure the flux of plasma particles in velocity space and determine their velocity distribution function. There are occasions when science objectives require high time-resolution measurements, and the instrument operates in short measurement cycles, sampling only a portion of the velocity distribution function. One such high-resolution measurement strategy consists of sampling the two-dimensional pitch-angle distributions of the plasma particles, which describes the velocities of the particles with respect to the local magnetic field direction. Here, we investigate the accuracy of plasma bulk parameters from such high-resolution measurements. We simulate electron observations from the Solar Wind Analyser's (SWA) Electron Analyser System (EAS) on board Solar Orbiter. We show that fitting analysis of the synthetic datasets determines the plasma temperature and kappa index of the distribution within 10% of their actual values, even at large heliocentric distances where the expected solar wind flux is very low.

Autoři článku: Hanleyduggan4788 (Ring Sumner)