Quinlanbowles5462

Z Iurium Wiki

Verze z 11. 10. 2024, 18:17, kterou vytvořil Quinlanbowles5462 (diskuse | příspěvky) (Založena nová stránka s textem „Copyright © 2020 the Author(s). Published by PNAS.Does prosocial behavior promote happiness? We test this longstanding hypothesis in a behavioral experime…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Copyright © 2020 the Author(s). Published by PNAS.Does prosocial behavior promote happiness? We test this longstanding hypothesis in a behavioral experiment that extends the scope of previous research. In our Saving a Life paradigm, every participant either saved one human life in expectation by triggering a targeted donation of 350 euros or received an amount of 100 euros. Using a choice paradigm between two binary lotteries with different chances of saving a life, we observed subjects' intentions at the same time as creating random variation in prosocial outcomes. We repeatedly measured happiness at various delays. Our data weakly replicate the positive effect identified in previous research but only for the very short run. One month later, the sign of the effect reversed, and prosocial behavior led to significantly lower happiness than obtaining the money. Notably, even those subjects who chose prosocially were ultimately happier if they ended up getting the money for themselves. Our findings revealed a more nuanced causal relationship than previously suggested, providing an explanation for the apparent absence of universal prosocial behavior. Copyright © 2020 the Author(s). Published by PNAS.The scope of adaptive phenotypic change within a lineage is shaped by how functional traits evolve. Castes are defining functional traits of adaptive phenotypic change in complex insect societies, and caste evolution is expected to be phylogenetically conserved and developmentally constrained at broad phylogenetic scales. Yet how castes evolve at the species level has remained largely unaddressed. Turtle ant soldiers (genus Cephalotes), an iconic example of caste specialization, defend nest entrances by using their elaborately armored heads as living barricades. Across species, soldier morphotype determines entrance specialization and defensive strategy, while head size sets the specific size of defended entrances. Our species-level comparative analyses of morphotype and head size evolution reveal that these key ecomorphological traits are extensively reversible, repeatable, and decoupled within soldiers and between soldier and queen castes. Repeated evolutionary gains and losses of the four morphotypes were reconstructed consistently across multiple analyses. In addition, morphotype did not predict mean head size across the three most common morphotypes, and head size distributions overlapped broadly across all morphotypes. Concordantly, multiple model-fitting approaches suggested that soldier head size evolution is best explained by a process of divergent pulses of change. Finally, while soldier and queen head size were broadly coupled across species, the level of head size disparity between castes was decoupled from both queen head size and soldier morphotype. These findings demonstrate that caste evolution can be highly dynamic at the species level, reshaping our understanding of adaptive morphological change in complex social lineages. Copyright © 2020 the Author(s). Published by PNAS.Glutamate is the major excitatory neurotransmitter in the brain, and photochemical release of glutamate (or uncaging) is a chemical technique widely used by biologists to interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness before photolysis. However, all caged glutamates are known to have strong antagonism toward receptors of γ-aminobutyric acid, the major inhibitory transmitter. We have developed a caged glutamate probe that is inert toward these receptors at concentrations that are effective for photolysis with violet light. Pharmacological tests in vitro revealed that attachment of a fifth-generation (G5) dendrimer (i.e., cloaking) to the widely used 4-methoxy-7-nitro-indolinyl(MNI)-Glu probe prevented such off-target effects while not changing the photochemical properties of MNI-Glu significantly. G5-MNI-Glu was used with optofluidic delivery to stimulate dopamine neurons of the ventral tegmental area of freely moving mice in a conditioned place-preference protocol so as to mediate Pavlovian conditioning.Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis-the decreasing concentration of essential dietary minerals with increasing plant productivity-that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2 enrichment. CX-5461 order Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1-2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40-54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na-nutrients which limit grasshopper abundance-declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines-habitat loss, light and chemical pollution-ND may be widespread in remaining natural areas.In earlier papers L.W. introduced two sequences of higher-rank zeta functions associated to a smooth projective curve over a finite field, both of them generalizing the Artin zeta function of the curve. One of these zeta functions is defined geometrically in terms of semistable vector bundles of rank n over the curve and the other one group-theoretically in terms of certain periods associated to the curve and to a split reductive group G and its maximal parabolic subgroup P. It was conjectured that these two zeta functions coincide in the special case when [Formula see text] and P is the parabolic subgroup consisting of matrices whose final row vanishes except for its last entry. In this paper we prove this equality by giving an explicit inductive calculation of the group-theoretically defined zeta functions in terms of the original Artin zeta function (corresponding to [Formula see text]) and then verifying that the result obtained agrees with the inductive determination of the geometrically defined zeta functions found by Sergey Mozgovoy and Markus Reineke in 2014.

Autoři článku: Quinlanbowles5462 (Galloway Sumner)