Hovmandcochran9883

Z Iurium Wiki

Verze z 11. 10. 2024, 17:46, kterou vytvořil Hovmandcochran9883 (diskuse | příspěvky) (Založena nová stránka s textem „This paper focuses on the experimental demonstration of a three-stage GST (gas switching technology) process (fuel, steam/CO2, and air stages) for syngas p…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper focuses on the experimental demonstration of a three-stage GST (gas switching technology) process (fuel, steam/CO2, and air stages) for syngas production from methane in the fuel stage and H2/CO production in the steam/CO2 stage using a lanthanum-based oxygen carrier (La0.85Sr0.15Fe0.95Al0.05O3). Experiments were performed at temperatures between 750-950 °C and pressures up to 5 bar. The results show that the oxygen carrier exhibits high selectivity to oxidizing methane to syngas at the fuel stage with improved process performance with increasing temperature although carbon deposition could not be avoided. Co-feeding CO2 with CH4 at the fuel stage reduced carbon deposition significantly, thus reducing the syngas H2/CO molar ratio from 3.75 to 1 (at CO2/CH4 ratio of 1 at 950 °C and 1 bar). The reduced carbon deposition has maximized the purity of the H2 produced in the consecutive steam stage thus increasing the process attractiveness for the combined production of syngas and pure hydrogen. Interestingly, the cofeeding of CO2 with CH4 at the fuel stage showed a stable syngas production over 12 hours continuously and maintained the H2/CO ratio at almost unity, suggesting that the oxygen carrier was exposed to simultaneous partial oxidation of CH4 with the lattice oxygen which was restored instantly by the incoming CO2. Furthermore, the addition of steam to the fuel stage could tune up the H2/CO ratio beyond 3 without carbon deposition at H2O/CH4 ratio of 1 at 950 °C and 1 bar; making the syngas from gas switching partial oxidation suitable for different downstream processes, for example, gas-to-liquid processes. The process was also demonstrated at higher pressures with over 70% fuel conversion achieved at 5 bar and 950 °C.The effect of relatively low concentrations of Br2(g) in the Cl2(g) feedstock for phosgene synthesis catalysis via the reaction of CO(g) and Cl2(g) over activated carbon (Donau Supersorbon K40) is explored. Under the stated reaction conditions and in the absence of a catalyst, BrCl(g) forms from the reaction of Cl2(g) and Br2(g). Phosgene synthesis over the catalyst at 323 K is investigated for Br2(g)Cl2(g) molar flow ratios in the range 0-1.52% (0-15,190 ppm) and shows enhanced rates of phosgene production. Maximum phosgene production is observed at a Br2(g)Cl2(g) molar flow ratio of 1.52% (15,190 ppm), which corresponds to an enhancement in the rate of phosgene production of ∼227% with respect to the phosgene flow rate observed in the absence of an incident bromine co-feed. A reaction model is proposed to account for the experimental observables, where BrCl(g) is highlighted as a significant intermediate. Specifically, enhanced rates of phosgene production are associated with the dissociative adsorption of BrCl(g) that indirectly increases the pool of Cl(ad) available for reaction.This paper reports the results of an investigation of industrial requirements for thermodynamic and transport properties carried out during the years 2019-2020. It is a follow-up of a similar investigation performed and published 10 years ago by the Working Party (WP) of Thermodynamics and Transport Properties of European Federation of Chemical Engineering (EFCE).1 The main goal was to investigate the advances in this area over the past 10 years, to identify the limitations that still exist, and to propose future R&D directions that will address the industrial needs. An updated questionnaire, with two new categories, namely, digitalization and comparison to previous survey/changes over the past 10 years, was sent to a broad number of experts in companies with a diverse activity spectrum, in oil and gas, chemicals, pharmaceuticals/biotechnology, food, chemical/mechanical engineering, consultancy, and power generation, among others, and in software suppliers and contract research laboratories. Very comprehensiv of the survey, many (anonymous) quotations (indicated with "..." and italics) from the industrial colleagues who have participated in the survey are provided. To help disseminate the specific information of interest only to particular industrial sectors, the paper has been written in such a way that the individual sections can also be read independently of each other.In terms of infection control in hospitals, especially the Covid-19 pandemic that we are living in, it has revealed the necessity of proper disposal of medical waste. The increasing amount of medical waste with the pandemic is straining the capacity of incineration facilities or storage areas. Converting this waste to energy with gasification technologies instead of incineration is also important for sustainability. This study investigates the gasification characteristics of the medical waste in a novel updraft plasma gasifier with numerical simulations in the presence of the plasma reactions. find more Three different medical waste samples, chosen according to the carbon content and five different equivalence ratios (ER) ranging from 0.1 to 0.5 are considered in the simulations to compare the effects of different chemical compositions and waste feeding rates on hydrogen (H2) content and syngas production. The outlet properties of a 10 kW microwave air plasma generator are used to define the plasma inlet in the numerical model and the air flow rate is held constant for all cases. Results showed that the maximum H2 production can be obtained with ER = 0.1 for all waste samples.While previous research has focused on heritage visitor attractions few studies have examined visitation to and experience of ancient industrial sites as geographical tourist spaces. This article profiles visitation to Dymarki Swietokrzyskie, a heritage reenactment of past events and ancient industrial traditions of iron smelting held in the Polish town of Nowa Slupia. Visitor survey analysis showed visitors perceive the event is a significant tourist attraction. It attracts tourists, is an element of the local heritage industry and contributes to the development of tourism services as part of the heritage tourism sector. The event in Nowa Slupia forms a tourist attraction based on heritage used for creating a contemporary heritage event, evoking specific tourist behaviors and therefore bringing economic profits. Creating the heritage tourism experience here was possible due to the influence of the mix of the elements in a heritage tourism behavioral model consisting of politics, conservation, authenticity, impact management and interpretation.

Autoři článku: Hovmandcochran9883 (Skipper Spence)