Terrylocklear4338

Z Iurium Wiki

Verze z 10. 10. 2024, 22:29, kterou vytvořil Terrylocklear4338 (diskuse | příspěvky) (Založena nová stránka s textem „We predict that gene pairing may be similarly advantageous in other organisms, and our findings could lead to the engineering of precise synthetic clocks i…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We predict that gene pairing may be similarly advantageous in other organisms, and our findings could lead to the engineering of precise synthetic clocks in embryos and organoids.In the adult hippocampus, synapses are constantly formed and eliminated1,2. However, the exact function of synapse elimination in the adult brain, and how it is regulated, are largely unknown. Here we show that astrocytic phagocytosis3 is important for maintaining proper hippocampal synaptic connectivity and plasticity. By using fluorescent phagocytosis reporters, we find that excitatory and inhibitory synapses are eliminated by glial phagocytosis in the CA1 region of the adult mouse hippocampus. Unexpectedly, we found that astrocytes have a major role in the neuronal activity-dependent elimination of excitatory synapses. Furthermore, mice in which astrocytes lack the phagocytic receptor MEGF10 show a reduction in the elimination of excitatory synapses; as a result, excessive but functionally impaired synapses accumulate. Finally, Megf10-knockout mice show defective long-term synaptic plasticity and impaired formation of hippocampal memories. Together, our data provide strong evidence that astrocytes eliminate unnecessary excitatory synaptic connections in the adult hippocampus through MEGF10, and that this astrocytic function is crucial for maintaining circuit connectivity and thereby supporting cognitive function.Tumour-associated antigens (TAAs) comprise a large set of non-mutated cellular antigens recognized by T cells in human and murine cancers. Their potential as targets for immunotherapy has been explored for more than two decades1, yet the origins of TAA-specific T cells remain unclear. While tumour cells may be an important source of TAAs for T cell priming2, several recent studies suggest that infection with some viruses, including Epstein-Barr virus and influenza virus can elicit T cell responses against abnormally expressed cellular antigens that function as TAAs3,4. However, the cellular and molecular basis of such responses remains undefined. Here we show that expression of the Epstein-Barr virus signalling protein LMP1 in B cells provokes T cell responses to multiple TAAs. LMP1 signalling leads to overexpression of many cellular antigens previously shown to be TAAs, their presentation on major histocompatibility complex classes I (MHC-I) and II (MHC-II) (mainly through the endogenous pathway) and the upregulation of costimulatory ligands CD70 and OX40L, thereby inducing potent cytotoxic CD4+ and CD8+ T cell responses. These findings delineate a mechanism of infection-induced anti-tumour immunity. Furthermore, by ectopically expressing LMP1 in tumour B cells from patients with cancer and thereby enabling them to prime T cells, we develop a general approach for rapid production of autologous cytotoxic CD4+ T cells against a wide range of endogenous tumour antigens, such as TAAs and neoantigens, for treating B cell malignancies. This work stresses the need to revisit classical concepts concerning viral and tumour immunity, which will be critical to fully understand the impact of common infections on human health and to improve the rational design of immune approaches to treatment of cancers.Successful pregnancies rely on adaptations within the mother1, including marked changes within the immune system2. It has long been known that the thymus, the central lymphoid organ, changes markedly during pregnancy3. However, the molecular basis and importance of this process remain largely obscure. Here we show that the osteoclast differentiation receptor RANK4,5 couples female sex hormones to the rewiring of the thymus during pregnancy. Genetic deletion of Rank (also known as Tnfrsf11a) in thymic epithelial cells results in impaired thymic involution and blunted expansion of natural regulatory T (Treg) cells in pregnant female mice. Sex hormones, in particular progesterone, drive the development of thymic Treg cells through RANK in a manner that depends on AIRE+ medullary thymic epithelial cells. The depletion of Rank in the mouse thymic epithelium results in reduced accumulation of natural Treg cells in the placenta, and an increase in the number of miscarriages. Thymic deletion of Rank also results in impaired accumulation of Treg cells in visceral adipose tissue, and is associated with enlarged adipocyte size, tissue inflammation, enhanced maternal glucose intolerance, fetal macrosomia, and a long-lasting transgenerational alteration in glucose homeostasis, which are all key hallmarks of gestational diabetes. Transplantation of Treg cells rescued fetal loss, maternal glucose intolerance and fetal macrosomia. In human pregnancies, we found that gestational diabetes also correlates with a reduced number of Treg cells in the placenta. Our findings show that RANK promotes the hormone-mediated development of thymic Treg cells during pregnancy, and expand the functional role of maternal Treg cells to the development of gestational diabetes and the transgenerational metabolic rewiring of glucose homeostasis.Reinforcement learning models postulate that neurons that release dopamine encode information about action and action outcome, and provide a teaching signal to striatal spiny projection neurons in the form of dopamine release1. Dopamine is thought to guide learning via dynamic and differential modulation of protein kinase A (PKA) in each class of spiny projection neuron2. However, the real-time relationship between dopamine and PKA in spiny projection neurons remains untested in behaving animals. Here we monitor the activity of dopamine-releasing neurons, extracellular levels of dopamine and net PKA activity in spiny projection neurons in the nucleus accumbens of mice during learning. We find positive and negative modulation of dopamine that evolves across training and is both necessary and sufficient to explain concurrent fluctuations in the PKA activity of spiny projection neurons. Modulations of PKA in spiny projection neurons that express type-1 and type-2 dopamine receptors are dichotomous, such that these neurons are selectively sensitive to increases and decreases, respectively, in dopamine that occur at different phases of learning. Thus, PKA-dependent pathways in each class of spiny projection neuron are asynchronously engaged by positive or negative dopamine signals during learning.Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves1,2. Although sympathetic nerves are known to regulate the HSC niche3-6, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow. Nociceptor neurons drive granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilization via the secretion of calcitonin gene-related peptide (CGRP). Unlike sympathetic nerves, which regulate HSCs indirectly via the niche3,4,6, CGRP acts directly on HSCs via receptor activity modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CALCRL) to promote egress by activating the Gαs/adenylyl cyclase/cAMP pathway. The ingestion of food containing capsaicin-a natural component of chili peppers that can trigger the activation of nociceptive neurons-significantly enhanced HSC mobilization in mice. Targeting the nociceptive nervous system could therefore represent a strategy to improve the yield of HSCs for stem cell-based therapeutic agents.Everyday tasks in social settings require humans to encode neural representations of not only their own spatial location, but also the location of other individuals within an environment. At present, the vast majority of what is known about neural representations of space for self and others stems from research in rodents and other non-human animals1-3. However, it is largely unknown how the human brain represents the location of others, and how aspects of human cognition may affect these location-encoding mechanisms. check details To address these questions, we examined individuals with chronically implanted electrodes while they carried out real-world spatial navigation and observation tasks. We report boundary-anchored neural representations in the medial temporal lobe that are modulated by one's own as well as another individual's spatial location. These representations depend on one's momentary cognitive state, and are strengthened when encoding of location is of higher behavioural relevance. Together, these results provide evidence for a common encoding mechanism in the human brain that represents the location of oneself and others in shared environments, and shed new light on the neural mechanisms that underlie spatial navigation and awareness of others in real-world scenarios.The central nervous system (CNS) controls skeletal muscles by the recruitment of motor units (MUs). Understanding MU function is critical in the diagnosis of neuromuscular diseases, exercise physiology and sports, and rehabilitation medicine. Recording and analyzing the MUs' electrical depolarization is the basis for state-of-the-art methods. Ultrafast ultrasound is a method that has the potential to study MUs because of the electrical depolarizations and consequent mechanical twitches. In this study, we evaluate if single MUs and their mechanical twitches can be identified using ultrafast ultrasound imaging of voluntary contractions. We compared decomposed spatio-temporal components of ultrasound image sequences against the gold standard needle electromyography. We found that 31% of the MUs could be successfully located and their firing pattern extracted. This method allows new non-invasive opportunities to study mechanical properties of MUs and the CNS control in neuromuscular physiology.Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when compared to controls. This was associated with a decreased amount of bone tissue within the callus, a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast activity and bone formation.

Autoři článku: Terrylocklear4338 (Carey Norup)