Cottoncrockett6054

Z Iurium Wiki

Verze z 10. 10. 2024, 22:23, kterou vytvořil Cottoncrockett6054 (diskuse | příspěvky) (Založena nová stránka s textem „Human adenoviruses (HAdVs) are a large family of DNA viruses that include more than 100 genotypes divided into seven species (A to G) and induce respirator…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Human adenoviruses (HAdVs) are a large family of DNA viruses that include more than 100 genotypes divided into seven species (A to G) and induce respiratory tract infections, gastroenteritis, and conjunctivitis. Genetically modified adenoviruses are also used as vaccines, gene therapies, and anticancer treatments. The APOBEC3s are a family of cytidine deaminases that restrict viruses by introducing mutations in their genomes. Viruses developed different strategies to cope with the APOBEC3 selection pressure, but nothing is known on the interplay between the APOBEC3s and the HAdVs. In this study, we focused on three HAdV strains the B3 and C2 strains, as they are very frequent, and the A12 strain, which is less common but is oncogenic in animal models. We demonstrated that the three HAdV strains induce a similar APOBEC3B upregulation at the transcriptional level. At the protein level, however, APOBEC3B is abundantly expressed during HAdV-A12 and -C2 infection and shows a nuclear distribution. On the contrary, nerally asymptomatic infections in immunocompetent adults. HAdVs encode several oncogenes, and some HAdV strains, like HAdV-A12, induce tumors in hamsters and mice. Here, we show that HAdV infection specifically promotes the expression of the APOBEC3B gene. We report that infection with the A12 strain induces a strong expression of an enzymatically active APOBEC3B protein in bronchial epithelial cells. We provide bioinformatic evidence that HAdVs' genomes and notably the A12 genome are under APOBEC3 selection pressure. Thus, APOBEC3B might contribute to adenoviral restriction, diversification, and oncogenic potential of particular strains.Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic human gammaherpesvirus and the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). During reactivation, viral genes are expressed in a temporal manner. These lytic genes encode transactivators, core replication proteins, or structural proteins. During reactivation, other viral factors that are required for lytic replication are expressed. The most abundant viral transcript is the long noncoding RNA (lncRNA) known as polyadenylated nuclear (PAN) RNA. lncRNAs have diverse functions, including the regulation of gene expression and the immune response. PAN possesses two main cis-acting elements, the Mta response element (MRE) and the expression and nuclear retention element (ENE). While PAN has been demonstrated to be required for efficient viral replication, the function of these elements within PAN remains unclear. Our goal was to determine if the ENE of PAN is required in the contexen associated with the lytic replication of the virus. PAN RNA is the most abundant viral transcript during the reactivation of KSHV and is required for viral replication. Deletion and knockdown of PAN resulted in defects in viral replication and reduced virion production in the absence of PAN RNA. To better understand how the cis elements within PAN may contribute to its function, we investigated if the ENE of PAN was necessary for viral replication. Although the ENE had previously been extensively studied with both biochemical and in vitro approaches, this is the first study to demonstrate the role of the ENE in the context of infection and that the ENE of PAN is not required for the lytic replication of KSHV.PA-X is a non-structural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacteria-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity as compared to that of the wild-type (WT) A/Viet Nam/1203/2004 H5N1 PAins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. click here However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. In this work, we used, for the first time, a bacteria-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.Photosynthesis of hydrogen peroxide (H2O2) in ambient conditions remains neither cost effective nor environmentally friendly enough because of the rapid charge recombination. Here, a photocatalytic rate of as high as 114 μmol⋅g-1⋅h-1 for the production of H2O2 in pure water and open air is achieved by using a Z-scheme heterojunction, which outperforms almost all reported photocatalysts under the same conditions. An extensive study at the atomic level demonstrates that Z-scheme electron transfer is realized by improving the photoresponse of the oxidation semiconductor under visible light, when the difference between the Fermi levels of the two constituent semiconductors is not sufficiently large. Moreover, it is verified that a type II electron transfer pathway can be converted to the desired Z-scheme pathway by tuning the excitation wavelengths. This study demonstrates a feasible strategy for developing efficient Z-scheme photocatalysts by regulating photoresponses.Encapsulins containing dye-decolorizing peroxidase (DyP)-type peroxidases are ubiquitous among prokaryotes, protecting cells against oxidative stress. However, little is known about how they interact and function. Here, we have isolated a native cargo-packaging encapsulin from Mycobacterium smegmatis and determined its complete high-resolution structure by cryogenic electron microscopy (cryo-EM). This encapsulin comprises an icosahedral shell and a dodecameric DyP cargo. The dodecameric DyP consists of two hexamers with a twofold axis of symmetry and stretches across the interior of the encapsulin. Our results reveal that the encapsulin shell plays a role in stabilizing the dodecameric DyP. Furthermore, we have proposed a potential mechanism for removing the hydrogen peroxide based on the structural features. Our study also suggests that the DyP is the primary cargo protein of mycobacterial encapsulins and is a potential target for antituberculosis drug discovery.

Autoři článku: Cottoncrockett6054 (Upton Wilkerson)