Kondrupadamsen8369

Z Iurium Wiki

Verze z 10. 10. 2024, 19:14, kterou vytvořil Kondrupadamsen8369 (diskuse | příspěvky) (Založena nová stránka s textem „The ^12C+^12C fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The ^12C+^12C fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The ^12C+^12C system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the ^12C+^12C fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies.Rainfall is hypothesized to be influenced by droplet charge, which is related to the global circuit current flowing through clouds. Gedatolisib research buy This is tested through examining a major global circuit current increase following the release of artificial radioactivity. Significant changes occurred in daily rainfall distribution in the Shetland Islands, away from pollution. Daily rainfall changed by 24%, and local clouds optically thickened, within the nuclear weapons test period. This supports expectations of electrically induced microphysical changes in liquid water clouds from additional ionization.Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin diffusion theory, but this theory is not necessarily applicable when charge transport becomes ballistic or when the spin diffusion length is exceptionally long. Here, we study these regimes by performing quantum simulations of graphene nonlocal spin valves. We find that conventional spin diffusion theory fails to capture the crossover to the ballistic regime as well as the limit of long spin diffusion length. We show that the latter can be described by an extension of the current theoretical framework. Finally, by covering the whole range of spin dynamics, our study opens a new perspective to predict and scrutinize spin transport in graphene and other two-dimensional material-based ultraclean devices.The transport properties of MAPbI3 are analyzed within a tight-binding model. We find a strong Fröhlich interaction of electron and holes with the electrostatic potential induced by the longitudinal optical phonon modes. This potential induces a strong scattering and limits the electronic mobilities at room temperature to about 200 cm^2/V s. With additional extrinsic disorder, a large fraction of the electrons and holes are localized, but they can diffuse by following nearly adiabatically the evolution of the electrostatic potential. This process of diffusion, at a rate which is given by the lattice dynamics, contributes to the unique electronic properties of this material.Raman experiments on bulk FeSe revealed that the low-frequency part of the B_1g Raman response R_B1g(Ω), which probes nematic fluctuations, rapidly decreases below the nematic transition at T_n∼85 K. Such behavior is expected when a gap opens up and at a first glance is inconsistent with the fact that FeSe remains a metal below T_n. We argue that the drop of R_B1g(Ω) can be ascribed to the fact that the nematic order drastically changes the orbital content of low-energy excitations near hole and electron pockets, making them nearly mono-orbital. In this situation, the B_1g Raman response gets reduced by the same vertex corrections that enforce charge conservation in the symmetric Raman channel. The reduction holds at low frequencies and gives rise to gaplike behavior of R_B1g(Ω). We also show that the enhancement of the B_1g Raman response near T_n is consistent with the sign change of the nematic order parameter between hole and electron pockets.In the context of quantum metrology, optical cavity-QED platforms have primarily been focused on the generation of entangled atomic spin states useful for next-generation frequency and time standards. Here, we report a complementary application the use of optical cavities to generate nonclassical states of light for electric field sensing below the standard quantum limit. We show that cooperative atom-light interactions in the strong collective coupling regime can be used to engineer generalized atom-light cat states which enable quantum enhanced sensing of small displacements of the cavity field even in the presence of photon loss. We demonstrate that metrological gains of 10-20 dB below the standard quantum limit are within reach for current cavity-QED systems operating with long-lived alkaline-earth atoms.The long-range dipole-dipole interaction can create delocalized states due to the exchange of excitation between Rydberg atoms. We show that even in a random gas many of the single-exciton eigenstates are surprisingly delocalized, composed of roughly one quarter of the participating atoms. We identify two different types of eigenstates one which stems from strongly-interacting clusters, resulting in localized states, and one which extends over large delocalized networks of atoms. These two types of states can be excited and distinguished by appropriately tuned microwave pulses, and their relative contributions can be modified by the Rydberg blockade and the choice of microwave parameters.The localization of point sources in optical microscopy enables nm-precision imaging of single-molecules and biological dynamics. We report a new method of localization microscopy using twin Airy beams that yields precise 3D localization with the key advantages of extended depth range, higher optical throughput, and potential for imaging higher emitter densities than are possible using other techniques. A precision of better than 30 nm was achieved over a depth range in excess of 7 μm using a 60×, 1.4 NA objective. An illustrative application to extended-depth-range blood-flow imaging in a live zebrafish is also demonstrated.Using an algebra of second-quantized operators, we develop local two-body parent Hamiltonians for all unprojected Jain states at filling factor n/(2np+1), with integer n and (half-)integer p. We rigorously establish that these states are uniquely stabilized and that zero mode counting reproduces mode counting in the associated edge conformal field theory. We further establish the organizing "entangled Pauli principle" behind the resulting zero mode paradigm and unveil an emergent SU(n) symmetry characteristic of the fixed point physics of the Jain quantum Hall fluid.Stochastic methods with quantum jumps are often used to solve open quantum system dynamics. Moreover, they provide insight into fundamental topics, such as the role of measurements in quantum mechanics and the description of non-Markovian memory effects. However, there is no unified framework to use quantum jumps to describe open-system dynamics in any regime. We solve this issue by developing the rate operator quantum jump (ROQJ) approach. The method not only applies to both Markovian and non-Markovian evolutions, but also allows us to unravel master equations for which previous methods do not work. In addition, ROQJ yields a rigorous measurement-scheme interpretation for a wide class of dynamics, including a set of master equations with negative decay rates, and sheds light on different types of memory effects which arise when using stochastic quantum jump methods.The chiral photocurrent or circular photogalvanic effect (CPGE) is a photocurrent that depends on the sense of circular polarization. In a disorder-free, noninteracting chiral Weyl semimetal, the magnitude of the effect is approximately quantized with a material-independent quantum e^3/h^2 for reasons of band topology. We study the first-order corrections due to the Coulomb and Hubbatrd interactions in a continuum model of a Weyl semimetal in which known corrections from other bands are absent. We find that the inclusion of interactions generically breaks the quantization. The corrections are similar but larger in magnitude than previously studied interaction corrections to the (nontopological) linear optical conductivity of graphene, and have a potentially observable frequency dependence. We conclude that, unlike the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of the CPGE in Weyl semimetals is not protected but has perturbative corrections in interaction strength.Herein, we describe an efficient, practical free-metal rapid access to active hexafluoroisopropyl benzoates from anthranils, hexafluoroisopropanol, and N-alkoxy α-halogenoacetamides. Notably, this process includes anthranils that underwent a distinct pattern reaction. The protocol has good functional group tolerance and a broad substrate scope. Using a simple and general method, we accomplished potential synthetic application of active ester.Nanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (∼2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered.

Autoři článku: Kondrupadamsen8369 (Harbo Slot)