Spearsbrandt5087

Z Iurium Wiki

Verze z 10. 10. 2024, 18:22, kterou vytvořil Spearsbrandt5087 (diskuse | příspěvky) (Založena nová stránka s textem „This article explores the impact of the COVID-19 pandemic on academic department chairs. Through a survey of 172 department chairs in the United States, th…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This article explores the impact of the COVID-19 pandemic on academic department chairs. Through a survey of 172 department chairs in the United States, the central findings of this research-intensified challenges, a multidirectional leadership pivot, and competing perceptions of higher education reinvention-reinforce the liminality of the academic chairperson role, highlight the need for increased training and development opportunities for individuals engaged in this work, and offer a reminder of ensuring that the broader perspectives of department chairs are included in efforts to reinvent institutions of higher education. These findings depict crisis leadership as a required competency for academic leaders.Ion gel-based dielectrics have long been considered for enabling low-voltage operation in printed thin-film transistors (TFTs), but their compatibility with in-place printing (a streamlined, direct-write printing approach where devices never leave the printer mid- or post-process) remains unexplored. Here, we demonstrate a simple and rapid 4-step in-place printing procedure for producing low-voltage electrolyte-gated carbon nanotube (CNT) thin-film transistors at low temperature (80 °C). This process consists of the use of polymer-wrapped CNT inks for printed channels, silver nanowire inks for printed electrodes, and imidazolium-based ion gel inks for printed gate dielectrics. We find that the efficacy of rinsing CNT films and printing an ion gel in-place is optimized using an elevated platen temperature (as opposed to external rinsing or post-process annealing), where resultant devices exhibited on/off-current ratios exceeding 103, mobilities exceeding 10 cm2V-1s-1, and gate hysteresis of only 0.1 V. Additionally, devices were tested under mechanical strain and long-term bias, showing exceptional flexibility and electrochemical stability over the course of 14-hour bias tests. The findings presented here widen the potential scope of print-in-place (PIP) devices and reveal new avenues of investigation for the improvement of bias stress stability in electrolyte-gated transistors.Wearable and implantable pressure sensors are in great demand for personalized health monitoring. Pressure sensors with low operation voltage and low power-consumption are desired for energy-saving devices. Organic iontronic devices, such as organic electrochemical transistors (OECTs), have demonstrated great potential for low power-consumption bioelectronic sensing applications. The ability to conduct both electrons and ions, in addition to their low-operation voltage has enabled the widespread use of OECTs in different biosensing fields. However, despite these merits, OECTs have not been demonstrated for pressure sensing applications. This is because most OECTs are gated with aqueous electrolyte, which fails to respond to external pressure. Here, a low power-consumption iontronic pressure sensor is presented based on an OECT, in which an ionic hydrogel is used as a solid gating medium. The resultant iontronic device operated at voltages less than 1 V, with a power-consumption between ~ 101-103 μW, while maintaining a tunable sensitivity between 1 ~ 10 kPa-1. This work places OECTs on the frontline for developing low power-consumption iontronic pressure sensors and for biosensing applications.Much of biomedical and healthcare data is encoded in discrete, symbolic form such as text and medical codes. There is a wealth of expert-curated biomedical domain knowledge stored in knowledge bases and ontologies, but the lack of reliable methods for learning knowledge representation has limited their usefulness in machine learning applications. While text-based representation learning has significantly improved in recent years through advances in natural language processing, attempts to learn biomedical concept embeddings so far have been lacking. A recent family of models called knowledge graph embeddings have shown promising results on general domain knowledge graphs, and we explore their capabilities in the biomedical domain. We train several state-of-the-art knowledge graph embedding models on the SNOMED-CT knowledge graph, provide a benchmark with comparison to existing methods and in-depth discussion on best practices, and make a case for the importance of leveraging the multi-relational nature of knowledge graphs for learning biomedical knowledge representation. The embeddings, code, and materials will be made available to the community.This study investigated the removal of fluoride from water using a calcium-modified dairy manure-derived biochar (Ca-DM500). The Ca-DM500 showed a 3.82 - 8.86 times higher removal of fluoride from water than the original (uncoated) manure-derived biochar (DM500). This is primarily attributed to strong precipitation/complexation between fluoride and calcium. The Freundlich and Redlich-Peterson sorption isotherm models better described the experimental data than the Langmuir model. AZ20 chemical structure Additionally, the removal kinetics were well described by the intraparticle diffusion model. The Ca-DM500 showed high reactivity per unit surface area [0.0001, 0.03, 0.16 mg F per m2 for Douglas fir-derived biochar (DF-BC), DM500. and Ca-DM500, respectively] for retention of fluoride reflecting the importance of surface complexation. The copresence of anions reduced removal by Ca-DM500 in the order SO 4 2 - ≈ PO 4 3 - > NO 3 - . The sorption behavior of fluoride in a continuous fixed-bed column was consistent with the Thomas model. Column studies demonstrated that the Ca-DM500 shows a strong affinity for fluoride, a low release potential, and a stable (unreduced) removal capacity through regeneration and reuse cycles.In the pursuit of higher food production and economic growth and increasing population, we have often jeopardized natural resources such as soil, water, vegetation, and biodiversity at an alarming rate. In this process, wider adoption of intensive farming practices, namely changes in land use, imbalanced fertilizer application, minimum addition of organic residue/manure, and non-adoption of site-specific conservation measures, has led to declining in soil health and land degradation in an irreversible manner. In addition, increasing use of pesticides, coupled with soil and water pollution, has led the researchers to search for an environmental-friendly and cost-effective alternatives to controlling soil-borne diseases that are difficult to control, and which significantly limit agricultural productivity. Since the 1960s, disease-suppressive soils (DSS) have been identified and studied around the world. Soil disease suppression is the reduction in the incidence of soil-borne diseases even in the presence of a nistic microbes. Plant factors such as age, type of crop, and root behaviour of the plant could stimulate or limit the diversity and structure of soil microorganisms in the rhizosphere. Further, identification and in-depth of disease-suppressive soils could lead to the discovery of more beneficial microorganisms with novel anti-microbial and plant promoting traits. To date, several microbial species have been isolated and proposed as key contributors in disease suppression, but the complexities as well as the mechanisms of the microbial and abiotic interactions remain elusive for most of the disease-suppressive soils. Thus, this review critically explores disease-suppressive attributes in soils, mechanisms involved, and biotic and abiotic factors affecting DSS and also briefly reviewing soil microbiome for anti-microbial drugs, in fact, a consequence of DSS phenomenon.COVID-19 has caused a huge impact on people's daily life and has made great damage on national economy. All the epidemic situation not only require the improvement of medical science, but also the corresponding auxiliary research field, e.g. the improve of protective clothing for medical use (MUPC). Developing a new kind of MUPC with portable cooling devices to improve medical workers' thermal comfort and protection performance of MUPC is imminent. In this paper, an integrated MUPC with a portable vortex tube cooling device was studied with experimental method. In a phytotron, a manikin wearing the MUPC was experimentally studied in terms of the influence of environment temperature and cool air supply conditions. On the basis of experiments, the MUPC inside air temperature and relative humidity, skin temperature of human body was studied with simulation method. Overall thermal sensation vote (TSV) and local TSV of human body were calculated, based on simulation results, to evaluate human thermal sensation. The results showed that, first, 50 L/min cool air flowrate with 18-20 °C supply temperature can create a good MUPC inside thermal sensation environment, for both head supply and body supply conditions. Both body supply condition and head supply condition cannot create a uniform MUPC inside thermal sensation environment. Second, MUPC inside air relative humidity is around or lower than 60% for most body parts, except for air supply position and body parts that air is difficult to reach. Thirdly, with cool air supplied into MUPC, a micro-positive pressure environment can be obtained, and the protection performance of MUPC can be improved.The series of Italian-Korean Symposia on Relativistic Astrophysics began in 1987, well before the Astrophysics Division of the Korean Physical Society was established in 1995. The symposiums brought together young researchers and scientists of both nations and formed the foundation that would lead to the establishment of the astrophysics division. In this essay, I want to describe a brief history for the series. The series has been ongoing for more than 30 years, thanks to much effort put in by many motivated scientists. The most recent event was in 2019 at Pescara, Italy.Colleges offer remedial coursework to help students enrolling in post-secondary education who are not adequately prepared to succeed in college-level courses. Despite the prevalence of remediation, previous research presents contradictory findings regarding its short- and long-term effects. This paper uses a doubly robust inverse probability weighting strategy to examine whether the degree completion and wage outcomes associated with remedial education vary by passing or failing remedial coursework. Using the NLSY Postsecondary Transcript-1997 data, we find that almost 30% of remedial course takers fail a remedial course. Students who took and passed their remedial coursework at both two-year and four-year colleges were more likely to graduate from college than similar students who did not take remediation. For both two-year and four-year college entrants, students who failed remedial coursework were less likely to obtain a bachelor's degree and, among degree receivers, took longer to graduate. Students who entered two-year or four-year colleges and who failed remedial coursework earned lower wages over time compared to similar students who never took remediation. Among four-year college entrants, these wage differences seem to be explained completely by degree completion. However, wage differences for two-year college entrants still remain after accounting for degree receipt. Our findings thus suggest that while many students may benefit from remedial education, a substantial number of students struggle with remedial coursework and fail to realize the intended benefits.

Autoři článku: Spearsbrandt5087 (Trujillo Hogan)