Lentzhatfield3967

Z Iurium Wiki

Verze z 10. 10. 2024, 14:28, kterou vytvořil Lentzhatfield3967 (diskuse | příspěvky) (Založena nová stránka s textem „Finally, some promising thermoelectric features of the semiconductor MWCNT are reproduced and discussed.Collisions of atomic nitrogen with molecular oxygen…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Finally, some promising thermoelectric features of the semiconductor MWCNT are reproduced and discussed.Collisions of atomic nitrogen with molecular oxygen have been treated with the quasiclassical trajectory method (QCT) in order to obtain a complete database of vibrationally detailed cross sections and rate coefficients for reactive, inelastic, and dissociation processes. For reaction rate coefficients, the agreement with experimental and theoretical data in the literature is excellent on the whole available interval 300-5000 K, with reliable extension to 20,000 K. For the inelastic case and for dissociation, no comparisons are available; therefore, a study of QCT reliability is proposed. In the inelastic case, it is found that "purely inelastic" and "quasireactive" collisions show not only different mechanisms but also different QCT levels of reliability at low energy. For dissociation, similar considerations bring to the conclusion that for the present collisional system, the QCT method is appropriate on the whole energy range studied. Rate coefficients for all the processes studied are provided in the electronic form.A new class of zirconium and hafnium complexes coordinated by linear dianonic tetradentate NSSN ligands is reported. The ligands feature two amide functions coupled with two thioether groups linked by a central flexible ethane bridge and two lateral rigid phenylene bridges and differ for the substituents on the aniline nitrogen atoms, i.e., isopropyl, cyclohexyl, or mesityl substituents NSSN-iPr, NSSN-Cy, or NSSN-Mes. They were prepared by reacting 2-aminothiophenol with dibromoethane to afford the NSSN ligands without substituents on the aniline nitrogen atoms, which were subsequently alkylated through a reductive amination of acetone or cyclohexanone or palladium-catalyzed cross-coupling reaction with mesityl bromide. The corresponding zirconium and hafnium complexes 1-5 were obtained through a transamination reaction between the neutral ligands and Zr(NMe2)4 or Hf(NMe2)4 [(NSSN-iPr)Zr(NMe2)2 (1), (NSSN-Cy)Zr(NMe2)2 (2), (NSSN-Mes)Zr(NMe2)2 (3), (NSSN-iPr)Hf(NMe2)2 (4), and (NSSN-Cy)Hf(NMe2)2 (5)]. They were characterized in solution by NMR spectroscopy and in solid state by X-ray diffraction analysis (except for 3). All complexes present an octahedral coordination geometry with a fac-fac ligand wrapping and a cis relationship between the other two monodentate ligands. The catalytic performances of 1-5 in the ring-opening polymerization of cyclic esters were investigated. Complex 1 was the most active its polymerization activity was superior to those generally displayed by zirconium complexes featuring OSSO ligands and compared well with those of the most active group 4 complexes operating in a toluene solution.Ru(II)-catalyzed enantioselective C-H functionalization involving an enantiodetermining C-H cleavage step remains undeveloped. Here we describe a Ru(II)-catalyzed enantioselective C-H activation/annulation of sulfoximines with α-carbonyl sulfoxonium ylides using a novel class of chiral binaphthyl monocarboxylic acids as chiral ligands, which can be easily and modularly prepared from 1,1'-binaphthyl-2,2'-dicarboxylic acid. A broad range of sulfur-stereogenic sulfoximines were prepared in high yields with excellent enantioselectivities (up to 99% yield and 99% ee) via desymmetrization, kinetic resolution, and parallel kinetic resolution. Furthermore, the resolution products can be easily transformed to chiral sulfoxides and key intermediates for kinase inhibitors.Intrinsic cardiorespiratory fitness (iCRF) indicates the CRF level in the sedentary state. However, even among sedentary individuals, a wide interindividual variability is observed in the iCRF levels, whose associated molecular characteristics are little understood. This study aimed to investigate whether serum and skeletal muscle metabolomics profiles are associated with iCRF, measured by maximal power output (MPO). Seventy sedentary young adults were submitted to venous blood sampling, a biopsy of the vastus lateralis muscle and iCRF assessment. Blood serum and muscle tissue samples were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Metabolites related to iCRF were those supported by three levels of evidence (1) correlation with iCRF, (2) significant difference between individuals with low and high iCRF, and (3) metabolite contribution to significant pathways associated with iCRF. From 43 serum and 70 skeletal muscle analyzed metabolites, iCRF was positively associated with levels of betaine, threonine, proline, ornithine, and glutamine in serum and lactate, fumarate, NADP+, and formate in skeletal muscle. Serum betaine and ornithine and skeletal muscle lactate metabolites explained 31.2 and 16.8%, respectively, of the iCRF variability in addition to body mass. The results suggest that iCRF in young adults is positively associated with serum and skeletal muscle metabolic levels, indicative of the amino acid and carbohydrate metabolism.Photoelectrocatalytic nanomaterials are promising for direct alcohol fuel cells, but the construction of high-efficiency catalysts remains difficult. We herein successfully synthesized three-dimensional (3D) PdM nanosheet assemblies (PdM NSAs, M = Au, Ag, and Cu) through a seed-mediated growth method, which displayed a typical 3D nanoflower morphology assembled from many two-dimensional ultrathin nanosheets. Due to the open 3D structure and the synergistic and electronic effects between Pd and Ag, the optimized PdAg NSAs showed the highest mass activity (9378 mA mg-1) for the ethylene glycol oxidation reaction. More interestingly, when irradiated with visible light, the mass activity increased to 14 590 mA mg-1, 12.1 times higher than that of the commercial Pd/C (1205 mA mg-1). In addition, the as-obtained catalysts also showed better long-term durability than that of the commercial Pd/C under the condition of with or without visible-light illumination. This work highlights the utilization of light energy in designing excellent photoelectrocatalysts to promote the photoelectrocatalytic performance of anode catalysts for fuel cells.The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complexes of AcIII with H2O, dimethyl sulfoxide (DMSO), OH-, and F- as axial ligands were studied using density functional theory. Formation of the [AcIII(DOTA)(OH)]2- and [AcIII(DOTA)(F)]2- complexes is predicted to be significantly more favorable than that of [AcIII(DOTA)(H2O)]- and [AcIII(DOTA)(DMSO)]- because of the enhanced relative Gibbs free energies. Further electronic structure analyses demonstrate that the type and nature of the bond between Ac and the ligand donor atom is the main driving force that determines the thermodynamic stability of the complexes. Specifically, the [AcIII(DOTA)]- complex strongly binds to OH- and F- via covalent bonds, while the bonding to H2O and DMSO is ionic and relatively weaker.Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene WBceGO-B3S1 from a variant BceGO-B3S1 and a glyphosate-tolerant gene I. variabilis-EPSPS* from the bacterium Isoptericola variabilis were transformed into an Oryza sativa subsp. selleck compound geng rice variety Zhonghua11 by Agrobacterium-mediated genetic transformation. Molecular detection and field agronomic trait analysis contributed to the selection of three homozygous lines with stable expression of a single copy of the transferred genes integrated into the intergenic region. Under the treatment of glyphosate at a test amount in the field, transgenic lines exhibited no differences in agronomic traits. Under the treatment by 3600 g ha-1 glyphosate, the glyphosate residues in the aboveground tissues of the three candidate transgenic homozygous lines were significantly lower than those in the transgenic homozygous line with I. variabilis-EPSPS* alone at 1, 5, and 10 days. The transgenic line coexpressing I. variabilis-EPSPS* and WBceGO-B3S1 has great application value in breeding of transgenic rice varieties with high glyphosate resistance and low glyphosate residues. This study is a step forward in solving the problem of herbicide residues in food crops by taking advantage of genes that degrade glyphosate.High-performance formaldehyde sensors play an important role in air quality assessment. Herein, a self-assembled monolayer (SAM) sensor for trace formaldehyde (FA) is fabricated based on the fluorescence enhancement of oxidized thiophene derivatives. In the primary SAM molecules, the functional backbone trithiophene (3T) links to the anchor through an n-propyl group. The anchor with an active Si-Cl bond can form a covalent bond with the SiO2 substrate by solution incubation, which ensures good stability against organic solvents and high sensitivity via monolayer structures. With the alkyl chain's leading, a dense 3T SAM can be obtained on SiO2. Upon exposure to UV light in the presence of oxygen, 3T can be oxidized into a nonfluorescent but coordination-active product with abundant carbonyl groups, which can be doped with FA and induce a blueshifted fluorescence. With this mechanism, we proposed an SAM-based FA sensor by detecting the enhancement of the blueshifted fluorescence. Reliable reversibility, selectivity, stability, and detection limit lower than 1 ppm are achieved in this system. The work provides an experimental basis for developing a cheap, efficient, and flexible sensor for trace FA detection.Apart from being the most common mechanism of regulating protein function and transmitting signals throughout the cell, phosphorylation has an ability to induce disorder-to-order transition in an intrinsically disordered protein. In particular, it was shown that folding of the intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can be induced by multisite phosphorylation. Here, the principles that govern the folding of phosphorylated 4E-BP2 (pT37pT46 4E-BP218-62) are investigated by analyzing canonical and replica exchange molecular dynamics trajectories, generated with the coarse-grained united-residue force field, in terms of local and global motions and the time dependence of formation of contacts between Cαs of selected pairs of residues. The key residues involved in the folding of the pT37pT46 4E-BP218-62 are elucidated by this analysis. The correlations between local and global motions are identified. Moreover, for a better understanding of the physics of the formation of the folded state, the experimental structure of the pT37pT46 4E-BP218-62 is analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. It is shown that without molecular dynamics simulations the kinks are able to identify not only the phosphorylated sites of protein, the key players in folding, but also the reasons for the weak stability of the pT37pT46 4E-BP218-62.Three known compounds, 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-isobutyrate (1), 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-phenylacetate (2), and 4-deoxy-4β-phorbol-12-tiglate-13-phenylacetate (3), were reisolated from the latex of Euphorbia umbellata through a bioguided fractionation process to target HIV-1 latency reactivation. The in vitro bioassay using infected T-cell lymphoblasts (J-Lat 10.6), complemented with surface CD4 receptor downregulation assessment, led to isolation of the compounds as a highly active ternary mixture. Effective purification of the individual compounds was achieved by first subjecting a phorbol-enriched fraction (previously prepared from crude latex) to MPLC, followed by semipreparative HPLC and characterization by 1D and 2D NMR spectroscopy and (+)-HRESIMS. Compared with a positive control, the isolated compounds were effective in reactivating 68-75% of the virus latency in the range of 9.7-0.097 μM for compound 1, 8.85-0.088 μM for compound 2, and 9.1-0.091 μM for compound 3, with the latter maintaining steady effectiveness down to a 10-5 dilution.

Autoři článku: Lentzhatfield3967 (Herbert Kennedy)