Waddelljonasson3922

Z Iurium Wiki

Verze z 10. 10. 2024, 12:16, kterou vytvořil Waddelljonasson3922 (diskuse | příspěvky) (Založena nová stránka s textem „Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. find protocol However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation.

To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis.

We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsetory and can be used as a predictor of disease outcome in sarcoidosis patients.

Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary.

Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed.

Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing.

Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.

Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.

Asthma is a chronic lung disease characterised by persistent airway inflammation. Altered microRNA (miRNA)-mediated gene silencing in bronchial epithelial cells (BECs) has been reported in asthma, yet adenosine deaminase acting on RNA (ADAR)-mediated miRNA editing in asthma remains unexplored.

We first identified adenosine to inosine (A-to-I) edited sites in miRNAs in BECs from 142 adult asthma cases and controls. A-to-I edited sites were tested for associations with asthma severity and clinical measures of asthma. Paired RNA sequencing data were used to perform pathway enrichments and test for associations with bioinformatically predicted target genes of the unedited and edited miRNAs.

Of 19 A-to-I edited sites detected in these miRNAs, one site at position 5 of miR-200b-3p was edited less frequently in cases compared with controls (p

=0.013), and especially compared with cases with moderate (p

=0.029) and severe (p

=3.9×10

), but not mild (p

=0.38), asthma. Bioinformatic prediction revealed 232 tdulthood.Previous studies have suggested an association between uric acid (UA) and the severity of pulmonary arterial hypertension (PAH), but it is unknown whether UA contributes to disease pathogenesis.The aim of this study was to determine the prognostic value of circulating UA in the era of current management of PAH and to investigate the role of UA in pulmonary vascular remodelling.Serum UA levels were determined in idiopathic, heritable or anorexigen PAH at baseline and first re-evaluation in the French Pulmonary Hypertension Network. We studied protein levels of xanthine oxidase (XO) and the voltage-driven urate transporter 1 (URATv1) in lungs of control and PAH patients and of monocrotaline (MCT) and Sugen/hypoxia (SuHx) rats. Functional studies were performed using human pulmonary artery smooth muscle cells (PA-SMCs) and two animal models of pulmonary hypertension (PH).High serum UA levels at first follow-up, but not at baseline, were associated with a poor prognosis. Both the generating enzyme XO and URATv1 were upregulated in the wall of remodelled pulmonary arteries in idiopathic PAH patients and MCT and SuHx rats. High UA concentrations promoted a mild increase in cell growth in idiopathic PAH PA-SMCs, but not in control PA-SMCs. Consistent with these observations, oxonic acid-induced hyperuricaemia did not aggravate MCT-induced PH in rats. Finally, chronic treatment of MCT and SuHx rats with benzbromarone mildly attenuated pulmonary vascular remodelling.UA levels in idiopathic PAH patients were associated with an impaired clinical and haemodynamic profile and might be used as a non-invasive indicator of clinical prognosis during follow-up. Our findings also indicate that UA metabolism is disturbed in remodelled pulmonary vascular walls in both experimental and human PAH.Mycobacteriophage phiT46-1 is a newly isolated Mycobacterium phage that was isolated by spontaneous release from Mycobacterium abscessus strain Taiwan-46 and infects M. abscessus strain BWH-C. Phage phiT46-1 is unrelated to previously described mycobacteriophages, has a 52,849-bp genome, and includes a polymorphic toxin-immunity cassette associated with type VII secretion systems.

Autoři článku: Waddelljonasson3922 (Jernigan Molloy)