Santosbullard1177

Z Iurium Wiki

Verze z 10. 10. 2024, 09:34, kterou vytvořil Santosbullard1177 (diskuse | příspěvky) (Založena nová stránka s textem „Crude oil pollution has consistently deteriorated all environmental compartments through the cycle of activities of the oil and gas industries. However, th…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Crude oil pollution has consistently deteriorated all environmental compartments through the cycle of activities of the oil and gas industries. However, there is a growing need to identify microbes with catabolic potentials to degrade these pollutants. This research was conducted to identify bacteria with functional degradative genes. A crude oil-polluted soil sample was obtained from an aged spill site at Imo River, Ebubu, Komkom community, Nigeria. Bacteria isolates were obtained and screened for hydrocarbon degradation potential by turbidometry assay. Plasmid and chromosomal DNA of the potential degraders were further screened for the presence of selected catabolic genes (C230, Alma, Alkb, nahAC, and PAHRHD(GP)) and identified by molecular typing. Sixteen (16) out of the fifty (50) isolates obtained showed biodegradation activity in a liquid broth medium at varying levels. Bacillus cereus showed highest potential for this assay with an optical density of 2.450 @ 600 nm wavelength. Diverse catabolic genes resident in plasmids and chromosomes of the isolates and, in some cases, both plasmid and chromosomes of the same organism were observed. The C230 gene was resident in >50% of the microbial population tested, while other genes occurred in lower proportions with the least observed in nahAC and PAHRHD. These organisms can serve as potential bioremediation agents.High extrusion temperatures may compromise the functionality of probiotics in dry food. This study aimed to (i) evaluate the effects of two types of microencapsulation techniques, different encapsulating agents, and 120 days of storage on the viability of a commercial probiotic product and (ii) investigate fecal microbiota populations and fecal characteristics of adult cats fed with diets supplemented with probiotics. Three experimental treatments were evaluated T1, commercial feed (control); T2, commercial kibbles coated with probiotics; and T3, commercial feed supplemented with freeze-dried probiotics and fructooligosaccharides. Fructooligosaccharides and gum arabic were used as encapsulating agents for freeze drying and spray drying and a pool containing Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus lactis, Bifidobacterium bifidum, Enterococcus faecium, and Saccharomyces cerevisiae as a probiotic. Diets were provided to 18 adult cats for 20 days. Feed samples were evaluated microbiologically, and feces were characterized according to their microbial content, pH, and fecal score. Freeze drying was more effective in maintaining microbial viability. Microcapsules prepared using fructooligosaccharides as encapsulants had the highest bacterial count 8.74 log CFU/g of lactic acid bacteria and 8.75 log CFU/g of enterococci. Probiotics and synbiotics positively modulated (P less then 0.05) the fecal microbiota of cats, increasing the lactic acid bacteria counts from 3.65 to 4.87 and 5.07 log CFU/g, respectively. Microbial viability decreased significantly (P less then 0.05) after storage, demonstrating the need for effective protection mechanisms against extrinsic agents. In conclusion, the supplementation of cat diets with probiotics positively affected the gut microbiota. However, the results reinforce that probiotic microorganisms must be incorporated into the animal feed via effective mechanisms to withstand harsh processing conditions and storage.Invasive candidiasis (IC) remains as a major cause of morbidity and mortality in critically ill patients. Amphotericin B (AmB) is one of the most effective antifungal agents commonly used to treat this infection. However, it induces severe side effects such as nephrotoxicity, cardiac alterations, nausea, fever, and liver damage. The utilization of drug delivery systems has been explored to overcome these limitations. Several AmB lipid formulations have been developed and are currently available in the market. Although they have the ability to reduce the main side effects of free AmB, their high cost, necessity of repeated intravenous injections for successful treatment, and incidence of pulmonary toxicity have limited their use. In the last decades, alginate has gained significant interest in drug delivery applications as a cost-effective strategy to improve the safety and therapeutic effect of toxic drugs. In this work, the clinically relevant drug AmB was encapsulated into alginate microparticles using the ess of the alginate-based microplatform toward Candida albicans cells. In addition, this vehicle may not require several infusions for a successful treatment while reducing the pulmonary toxic effect induced by commercial lipid formulations.Studies have been directed towards the production of new titanium alloys, aiming for the replacement of Ti-6 Aluminium-4 Vanadium (TiAlV) alloy in the future. Many mechanisms related to biocompatibility and chemical characteristics have been studied in the field of implantology, but enzymatic defenses against oxidative stress remain underexplored. Bone marrow stromal cells have been explored as source of cells, which have the potential to differentiate into osteoblasts and therefore could be used as cells-based therapy. The objective of this study was to evaluate the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in porous scaffolds of Ti-6 Aluminium-4 Vanadium (TiAlV), Ti-35 Niobium (TiNb), and Ti-35 Niobium-7 Zirconium-5 Tantalum (TiNbZrTa) on mouse bone marrow stromal cells. Porous titanium alloy scaffolds were prepared by powder metallurgy. After 24 hours, cells plated on the scaffolds were analyzed by scanning electron microscopy (SEM). The antioxidant enzyme activity was measured 72 hours after cell plating. Quantitative real time PCR (qRT-PCR) was performed after 3, 7, and 14 days, and Runx2 (Runt-related transcription factor2) expression was evaluated. The SEM images showed the presence of interconnected pores and growth, adhesion, and cell spreading in the 3 scaffolds. Although differences were noted for SOD and CAT activity for all scaffolds analyzed, no statistical differences were observed (p > 0.05). The osteogenic gene Runx2 presented high expression levels for TiNbZrTa at day 7, compared to the control group (TiAlV day 3). selleckchem At day 14, all scaffolds had more than 2-fold induction for Runx2 mRNA levels, with statistically significant differences compared to the control group. Even though we were not able to confirm statistically significant differences to justify the replacement of TiAlV regarding antioxidant enzymes, TiNbZrTa was able to induce faster bone formation at early time points, making it a good choice for biomedical and tissue bioengineering applications.

Autoři článku: Santosbullard1177 (Birk Steensen)