Marshtoft6503

Z Iurium Wiki

Verze z 10. 10. 2024, 09:05, kterou vytvořil Marshtoft6503 (diskuse | příspěvky) (Založena nová stránka s textem „Overall, we hope that the proposed method for the direct visualization of particle trajectories in micro-hydrocyclones will serve as a tool, which can be l…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Overall, we hope that the proposed method for the direct visualization of particle trajectories in micro-hydrocyclones will serve as a tool, which can be leveraged to accelerate the development of micro-hydrocyclones for biomedical applications.Giant unilamellar vesicles (GUVs) are a useful platform for reconstituting and studying membrane-bound biological systems, offering reduced complexity compared to living cells. Several techniques exist to form GUVs and populate them with biomolecules of interest. However, a persistent challenge is the ability to efficiently and reliably load solutions of biological macromolecules, organelle-like membranes, and/or micrometer-scale particles with controlled stoichiometry in the encapsulated volume of GUVs. Here, we demonstrate the use of acoustic streaming from high-intensity focused ultrasound to make and load GUVs from bulk solutions, without the need for nozzles that can become clogged or otherwise alter the solution composition. In this method, a compact acoustic lens is focused on a planar lipid bilayer formed between two aqueous solutions. The actuation of a planar piezoelectric material coupled to the lens accelerates a small volume of liquid, deforming the bilayer and forming a GUV containing the solution on the transducer side of the bilayer. As demonstrated here, acoustic jetting offers an alternative method for the generation of GUVs for biological and biophysical studies.

The accumulating volumes of biosolids in lagoons worldwide have intensified the need to develop innovative wastewater treatment strategies. Here, we provide proof-of-concept for the incorporation of biosolids into the hydrolysis step of a two-step thermal conversion of lipids for production of renewable hydrocarbons, which can be utilized as renewable fuels. Brown grease was hydrolysed with biosolids or water at 260-280°C for 60min at a mass ratio of 11 feed to water or biosolids. The feedstock and products were characterized using various analytical techniques to compare the performance of biosolids to water. The results indicated that there was no significant difference in the degree of hydrolysis of brown grease when biosolids was used as water replacement. The fatty acids composition after hydrolysis when biosolids was used as awater replacement also remained largely unchanged. Hydrolysis of brown grease with biosolids could be achieved at pH ranging from 3.3 to 8.9, and at a lower than previously established temperature. Significantly, the rapid settling of solid material in biosolids observed after thermal hydrolysis of brown grease may reduce the necessity of biosolids settling lagoons. Thus, incorporation of biosolids intoa lipid hydrolysis-pyrolysis process may simultaneously benefit the biofuel and waste management sectors.

Direct ethanol fuel cells (DEFC) still lack active and efficient electrocatalysts for the alkaline ethanol oxidation reaction (EOR). In this work, a new instant reduction synthesis method was developed to prepare carbon supported ternary PdNiBi nanocatalysts with improved EOR activity. Synthesized catalysts were characterized with a variety of structural and compositional analysis techniques in order to correlate their morphology and surface chemistry with electrochemical performance. The modified instant reduction synthesis results in well-dispersed, spherical Pd85Ni10Bi5 nanoparticles on Vulcan XC72R support (Pd85Ni10Bi5/C(II-III)), with sizes ranging from 3.7 ± 0.8 to 4.7 ± 0.7 nm. On the other hand, the common instant reduction synthesis method leads to significantly agglomerated nanoparticles (Pd85Ni10Bi5/C(I)). EOR activity and stability of these three different carbon supported PdNiBi anode catalysts with a nominal atomic ratio of 85105 were probed via cyclic voltammetry and chronoamperometry using the rotating disk electrode method. Pd85Ni10Bi5/C(II) showed the highest electrocatalytic activity (150 mA⋅cm-2; 2678 mA⋅mg-1) with low onset potential (0.207 V) for EOR in alkaline medium, as compared to a commercial Pd/C and to the other synthesized ternary nanocatalysts Pd85Ni10Bi5/C(I) and Pd85Ni10Bi5/C(III). This new synthesis approach provides a new avenue to developing efficient, carbon supported ternary nanocatalysts for future energy conversion devices. this website Graphical AbstractThe modified instant reduction method for synthesis of ternary Pd85Ni10Bi5/C(II) nanocatalyst using Vulcan XC72R as carbon support initiates an agglomeration reduction, provides low average particle size, and enables enhanced activity for the alkaline ethanol oxidation reaction (EOR) compared to the common instant reduction method and to a commercial Pd/C catalyst.In this paper we use spatial econometric specifications to model daily infection rates of COVID-19 across countries. Using recent advances in Bayesian spatial econometric techniques, we particularly focus on the time-dependent importance of alternative spatial linkage structures such as the number of flight connections, relationships in international trade, and common borders. The flexible model setup allows to study the intensity and type of spatial spillover structures over time. Our results show notable spatial spillover mechanisms in the early stages of the virus with international flight linkages as the main transmission channel. In later stages, our model shows a sharp drop in the intensity spatial spillovers due to national travel bans, indicating that travel restrictions led to a reduction of cross-country spillovers.Unemployment has been routinely used as a measure of the economic cycle. In addition, regional unemployment rates are characterized by, among other factors, their relation to the national unemployment rate. In this regard, the literature on regional sensitivity to the economic cycle has analyzed how fluctuations in the national unemployment rate affect the regions. In recent years, due to the great impact of past crises, the development of new econometric techniques and the possible arrival of new crises, the debate on how sensitive regions are to the economic cycle has reopened. In Spain, this debate is necessary since unemployment rates are very high and display a great deal of heterogeneity. We analyzed regional unemployment rates in Spain between 1978 and 2018 through a recently developed dynamic spatial econometric model with common factors and found that some regions are more sensitive than others to the economic cycle. The results seem to show that in Spain, the sensitivity to the economic cycle displays a geographical pattern where the most sensitive regions are those located on the Mediterranean coast.

Autoři článku: Marshtoft6503 (Omar Skaarup)