Kellybarrera1475

Z Iurium Wiki

Verze z 9. 10. 2024, 20:25, kterou vytvořil Kellybarrera1475 (diskuse | příspěvky) (Založena nová stránka s textem „Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Mannose-binding lecti…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Mannose-binding lectin (MBL) is an acute phase protein associated with the pathophysiology of leprosy. Some studies have shown that there is a correlation between serum levels of MBL and polymorphisms in its gene associated with susceptibility per se and to different clinical forms. The aim of this study was to conduct a systematic review of publications in the literature that studied the association of MBL with leprosy. Databases were searched until December 2020 (PROSPERO CRD42020158458), and additional searches were conducted scanning the reference lists of the articles. Two independent reviewers assessed the study quality using the Newcastle-Ottawa Quality Assessment Scale. Finally, 10 eligible articles were included in the study. The overall results indicated that both low MBL serum levels and polymorphisms in the structural or promoter region of its gene seem to be associated as protective factors against the development of severe forms. The results suggest that MBL may play a role in the clinical progression of leprosy.Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.Microorganisms have been known to coexist in various parts of human body including the gut. The interactions between microbes and the surrounding tissues of the host are critical for fine fettle of the gut. The incidence of such microorganisms tends to vary among specific type of cancer affected individuals. Such microbial communities of specific tumor sites in cancer affected individuals could plausibly be used as prognostic and/or diagnostic markers for tumors associated with that specific site. Microorganisms of intestinal and non-intestinal origins including Helicobacter pylori can target several organs, act as carcinogens and promote cancer. It is interesting to note that diets causing inflammation can also increase the cancer risk. Yet, dietary supplementation with prebiotics and probiotics can reduce the incidence of cancer. Therefore, both diet and microbial community of the gut have dual roles of prevention and oncogenesis. IKE modulator Hence, this review intends to summarize certain important details related to gut microbiome and cancer.Tropical and subtropical areas of the world are affected by leishmaniasis, which is caused by Leishmania spp. It has been categorized as an NTD (neglected tropical disease) because of its negligence. The sand fly of genus Phlebotomus acts as the vector for the transmission of the promastigote form of this protozoan parasite to the mammalian host where it converts to amastigote form in the macrophages. Visceral form of leishmaniasis (VL) is a deadly infection in the endothelial system of the human and other mammals. Only a few chemotherapeutic agents are available for the treatment of this infectious disease whereas no vaccine is available for the control of leishmanial infection. Therefore in the current study, we have tested the effects of gardiquimod (a TLR agonist) as an adjuvant in combination with the formalin-killed antigen of L. donovani as a vaccine. The mice were vaccinated thrice at an interval of 2 weeks and challenged with L. donovani promastigotes after 2 weeks of the last vaccination. We assessed the parasite load, delayed-type hypersensitivity (DTH) responses, humoral and cell-mediated immune response in BALB/c mice before and after challenge infection with L. donovani. Immunized mice were found to have the least parasite load, high DTH response, elevated levels of Th1 cytokines, IgG2a, and nitric oxide than non-immunized and infected control mice. The efficacy of the vaccine was boosted with the use of adjuvant gardiquimod that depicts its potential as an adjuvant in this study. Our study is reporting the adjuvant effects of gardiquimod for the first time. Further studies using other Leishmania species can be performed to signify its role.

The molecular basis of the tear film and lipid layer alterations in meibomian gland dysfunction (MGD) is unknown. This study aimed to identify and compare (O-acyl)-omega-hydroxy fatty acids (OAHFAs) derived from human meibum and tears in MGD.

Of 195 eligible subjects (18-84 years, 62.6% female), 183 and 174 provided samples for tears and meibum, respectively. Subjects were classified into four groups Normal, Asymptomatic MGD, MGD, and Mixed. Samples from the right eye of each subject were infused into the SCIEX 5600 TripleTOF mass spectrometer in negative ion mode. Lipid intensities identified with Analyst1.7TF and SCIEX LipidView1.3 were normalized by an internal standard and total ion current, then statistically compared in MetaboAnalyst 4.0.

In meibum and tears, 76 and 78 unique OAHFAs were identified, respectively. The five most frequent and abundant OAHFAs were 182/162, 181/321, 181/301, 182/321, and 181/341. Two OAHFAs, 182/202 and 182/201, were identified only in tears. Initial univariate analysis revealed three differently regulated OAHFAs in meibum and eight in tears.

Autoři článku: Kellybarrera1475 (Sommer Madden)