Suarezcase1282

Z Iurium Wiki

Verze z 9. 10. 2024, 20:22, kterou vytvořil Suarezcase1282 (diskuse | příspěvky) (Založena nová stránka s textem „Insect susceptibility to entomopathogenic microorganisms under heavy metal stress, as well as its regulatory mechanism is still poorly understood. This stu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Insect susceptibility to entomopathogenic microorganisms under heavy metal stress, as well as its regulatory mechanism is still poorly understood. This study aims to investigate the susceptibility of gypsy moth larvae to Beauveria bassiana under cadmium (Cd) stress (at 3.248 or 44.473 mg Cd/kg fresh food), and reveal the potential molecular mechanisms underlying the Cd effect on the larval susceptibility to B. bassiana via combined transcriptome and proteome analyses. Our results showed that pre-exposure to Cd increased the susceptibility of gypsy moth larvae to B. bassiana, and there was an additive effect between Cd exposure and B. bassiana infection on the larval mortality. Under the Cd stress at low and high concentrations, 138 and 899 differentially expressed genes (DEGs), as well as 514 and 840 differentially expressed proteins (DEPs) were identified, respectively. Immunotoxic effects induced by Cd exposure at the transcription level increased in a negative dose-response manner, with no immunity-related DEGs obtained at the low Cd concentration and a high number of immunity-related DEGs down-regulated at the high Cd concentration. In contrast, a potentially suppressed or stimulated trend in the Toll and Imd signaling pathway at protein level was revealed under low or high concentration of Cd treatment. Analysis of xenobiotics biodegradation-related pathways at both transcription and translation levels revealed that the gypsy moth larvae possessed an efficient homeostasis regulatory mechanism to the low-level Cd exposure, but exhibited a reduced xenobiotics biodegradation capability to the Cd stress at high levels. Together, these findings demonstrate Cd contamination promote the microbial-based biocontrol efficacy, and unravel the molecular regulatory network of heavy metal exposures that affects susceptibility of insects to pathogenic diseases.The North Pacific-Arctic Oceans are important compartments for semi-volatile organic compounds' (SVOCs) global marine inventory, but whether they act as a "source" or "sink" remains controversial. To study the air-sea exchange and fate of SVOCs during their poleward long-range transport, low-altitude atmosphere and surface seawater were measured for polycyclic aromatic hydrocarbons (PAHs) by passive sampling from July to September in 2014. Gaseous PAH concentrations (0.67-13 ng m-3) were dominated by phenanthrene (Phe) and fluorene (Flu), which displayed an inverse correlation with latitude, as well as a significant linear relationship with partial pressure and inverse temperature. Concentrations of PAHs in seawater (1.8-16 ng L-1) showed regional characteristics, with higher levels near the East Asia and lower values in the Bering Strait. The potential impact from the East Asian monsoon was suggested for gaseous PAHs, which - similar to PAHs in surface seawater - were derived from combustion sources. In addition, the data implied net volatilization of PAHs from seawater into the air along the entire cruise; fluxes displayed a similar pattern to regional and monthly distribution of PAHs in seawater. Our results further emphasized that air-sea exchange is an important process for PAHs in the open marine environments.Low doses of neuroactive chemicals end up in the environment and disrupt behaviour of non-target organisms. Although a whole range of studies have documented pollutant-induced changes in behaviour, natural daily variability in behaviour is rarely taken into account. This is surprising because biological rhythms may affect the outcome of experiments, are adaptive and are expected to be sensitive to neurochemical exposure. Here, we exploit daily behavioural variation in the fish model Nothobranchius furzeri to examine if behavioural effects of chronic exposure (74 days) to an environmentally relevant level (28 ng/L) of the neurochemical fluoxetine depend on the time of day. Fluoxetine exposure induced an increase in anxiety-related behaviour that was slightly more pronounced in the evening compared to the morning. Moreover, open-field locomotor activity was disrupted and daily patterns in activity lifted upon exposure to the compound. These results imply that short-term behavioural variability should be considered both to standardise ecological risk assessment of neuroactive chemicals as well as to better understand the environmental impact of such compounds in aquatic ecosystems.Hooghly River (HR), the other name used for the lower stretch of River Ganga, is a prime freshwater source in the eastern part of India. However HR has been evidenced with a variety of emerging organic pollutants (EOPs) in the recent past. Given the extensive use of plasticizers and additive in plastic products, we have investigated seven plasticizers and bisphenol A (BPA) in the surface and storm-water of HR up to the tip of the Bay of Bengal. selleck products Further using a previously published sediment data we have estimated the fluxes for the aforementioned EOPs. Surface water and storm-water concentrations of seven plasticizers varied between 92.62 and 770 ng/L (176.1 ± 104.8; Avg ± SD) and 120.9-781.5 ng/L (355.2 ± 232.5), respectively. BPA varied between 43 and 8800 ng/L (658.3 ng/L ± 1760) and 117.9-2147 ng/L (459.3 ± 620.2) in surface and storm-water, respectively. With the increase in salinity, a decreasing trend for bis-(2-ethylhexyl) phthalate (DEHP) was evidenced. However, concentration of BPA increased with the increase in salinity. Significant and strong correlation between DEHP and BPA (R2 = 0.6; p less then 0.01) in the suburban corridor might have resulted from sludge disposal of the scrap recycling activities. Using site-specific principal component analysis, unregulated disposal of plastic waste, particularly from such industrial belts and tourist spots were identified as the possible point sources for plasticizers and BPA in this region. Net diffusive flux based on fugacity fraction showed a trend depending on the pollutant's aqueous solubility and partition coefficient. However, transfer tendency from water to sediment was noticed in the sites having point source. Estimated ecotoxicological risk posed by BPA was higher for edible fishes and for lower order organisms, PAEs was the major contributor.

Autoři článku: Suarezcase1282 (Winters Dalby)