Helbokuhn0160

Z Iurium Wiki

Verze z 9. 10. 2024, 20:21, kterou vytvořil Helbokuhn0160 (diskuse | příspěvky) (Založena nová stránka s textem „The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.Irrigation is fundamental for agriculture but, as climate change becomes more persistent, there is a need to conserve water and use it more efficiently. It is therefore crucial to identify cultivars that can tolerate drought. For economically relevant crops, such as tomatoes, this purpose takes on an even more incisive role and local agrobiodiversity is a large genetic reservoir of promising cultivars. In this study, nine local Italian cultivars of tomatoes plus four widely used commercial cultivars were considered. These experienced about 20 d of drought, either at vegetative or reproductive phase. Various physio-morphological parameters were monitored, such as stomatal conductance (gs), photosynthesis (A), water use efficiency (WUE), growth (GI) and soil water content (SWC). The different responses and behaviors allowed to divide the cultivars into three groups tolerant, susceptible, and intermediate. The classification was also confirmed by a principal component analysis (PCA). Panobinostat The study, in addition to deepening the knowledge of local Italian tomato cultivars, reveals how some cultivars perform better under stress condition than commercial ones. Moreover, the different behavior depends on the genotype and on the growth phase of plants. In fact, the Perina cultivar is the most tolerant during vegetative growth while the Quarantino cultivar is mostly tolerant at reproductive stage. The results suggest that selection of cultivars could lead to a more sustainable agriculture and less wasteful irrigation plans.Comfrey (Symphytum officinale L.) roots are well-known bioactive ingredients included in various cosmeceutical and pharmaceutical preparations. In this study, the influence of the post-harvest storage on the chemico-biological potential of roots collected from different European regions and stored for up to six months was investigated. Total phenolic content (TPC) and total phenolic acid content (TPAC) were spectrophotometrically estimated, whereas the levels of individual phenolic and pyrrolizidine alkaloidal markers were determined by HPLC-DAD and HPLC-MS/MS, respectively. The changes in the biological potential was tracked via antioxidant (DPPH, ABTS, CUPRAC, and FRAP) and anti-enzymatic (cholinesterase, tyrosinase, glucosidase, and amylase) assays. TPC and TPAC varied from 6.48-16.57 mg GAE/g d.w. root and from 2.67-9.03 mg CAE/g, respectively. The concentration of the four phenolics (rosmarinic acid, globoidnan A, globoidnan B, rabdosiin) and six pyrrolizidine alkaloids generally showed maximum values at 1-3 months, after which their levels significantly decreased. With respect to the bioassays, the samples showed a wide range of antioxidant and anti-enzymatic effects; however, a direct storage time-bioactivity relationship was not observed. Similar conclusions were also revealed by the multivariate and correlation analyses. Our study could improve the current knowledge of the shelf-life properties of comfrey-based products and enhance their industrial exploitation.The increasing number of contaminated sites worldwide calls for sustainable remediation, such as phytoremediation, in which plants are used to decontaminate soils. We hypothesized that better anchoring phytoremediation in plant ecophysiology has the potential to drastically improve its predictability. In this study, we explored how the community composition, diversity and coppicing of willow plantations, influenced phytoremediation services in a four-year field trial. We also evaluated how community-level plant functional traits might be used as predictors of phytoremediation services, which would be a promising avenue for plant selection in phytoremediation. We found no consistent impact of neither willow diversity nor coppicing on phytoremediation services directly. These services were rather explained by willow traits related to resource economics and management strategy along the plant "fast-slow" continuum. We also found greater belowground investments to promote plant bioconcentration and soil decontamination. These traits-services correlations were consistent for several trace elements investigated, suggesting high generalizability among contaminants. Overall, our study provides evidence, even using a short taxonomic (and thus functional) plant gradient, that traits can be used as predictors for phytoremediation efficiency for a broad variety of contaminants. This suggests that a trait-based approach has great potential to develop predictive plant selection strategies in phytoremediation trials, through a better rooting of applied sciences in fundamental plant ecophysiology.Roegneria kamoji, a perennial monocot weed that belongs to the tribe Triticeae (family Poaceae), is an emerging problematic weed in winter wheat (Triticum aestivum) fields in China. We have previously confirmed four R. kamoji populations tolerant to acetyl-CoA carboxylase (ACCase) inhibitors, and failed control of these populations by metsulfuron-methyl was observed. The objective of this study was to characterize the level of tolerance to metsulfuron-methyl, the basis of tolerance mechanism, and cross-tolerance to acetolactate synthase (ALS) inhibitors in R. kamoji. A whole-plant dose-response assay showed that plants of all R. kamoji populations (both from wheat fields and uncultivated areas) exhibited high tolerance to metsulfuron-methyl, based on their 100% survival at 6-fold recommended field dose (RFD) and ED50 values >6.84-fold RFD, no susceptible population was found. Gene sequencing indicated that no reported amino acid substitutions associated with resistance to ALS inhibitor were found in the ALS gene among the R. kamoji populations. Pretreatment with the known cytochrome P450 monooxygenases (CytP450) inhibitor malathion reduced the ED50 values of metsulfuron-methyl in two R. kamoji populations. These populations also exhibited cross-tolerance to RFD of mesosulfuron-methyl and bispyribac-sodium. The activities of glutathione-S-transferase (GST) and CytP450 could be induced by metsulfuron-methyl in R. kamoji, which is similar to the known tolerant crop wheat. This is the first report elucidating metsulfuron-methyl tolerance in R. kamoji. The reversal of tolerance by malathion and the GST and/or CytP450 enhanced herbicide metabolism suggests that non-target-site mechanisms confer tolerance to metsulfuron-methyl in R. kamoji.The main goal of this research was to investigate the effects of corn smut (Ustilago maydis DC. Corda) infection on the morphological (plant height, and stem diameter), and biochemical parameters of Zea mays L. plants. The biochemical parameters included changes in the relative chlorophyll, malondialdehyde (MDA), and photosynthesis pigments' contents, as well as the activities of antioxidant enzymes-ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD). The second aim of this study was to evaluate the impact of phytohormones (auxin, cytokinin, gibberellin, and ethylene) on corn smut-infected plants. The parameters were measured 7 and 11 days after corn smut infection (DACSI). Two hybrids were grown in a greenhouse, one fodder (Armagnac) and one a sweet corn (Desszert 73). The relative and the absolute amount of photosynthetic pigments were significantly lower in the infected plants in both hybrids 11 DACSI. Activities of the antioxidant enzymes and MDA content were higher in both infected hybrids. Auxin, cytokinin, and gibberellin application diminished the negative effects of the corn smut infection (CSI) in the sweet corn hybrid. Phytohormones i.e., auxin, gibberellin, and cytokinin can be a new method in protection against corn smut.Phosphorus (P) availability significantly impacts olive tree reproductive development and consequential fruit production. However, the importance of P fertilization in olive cultivation is not clear, and P application is usually recommended only after P deficiency is identified. In order to determine the long-term impacts of continuous P fertilization in intensive irrigated olive cultivation, the growth and production of trees in an intensive orchard with or without P fertilization were evaluated over six consecutive seasons. Withholding of P resulted in significant reduction in soil P quantity and availability. Under lower P availability, long-term fruit production was significantly impaired due to reduced flowering and fruit set. In addition, trees under conditions of low P were characterized by higher alternate bearing fluctuations. Olive tree vegetative growth was hardly affected by P fertilizer level. The impairment of tree productivity was evident in spite of the fact that leaf P content in the treatment without P fertilization did not decrease below commonly reported and accepted thresholds for P deficiency. This implies that the leaf P content sufficiency threshold for intensive olive orchards should be reconsidered. The results demonstrate the negative impact of insufficient P fertilization and signify the need for routine P fertilization in intensive olive cultivation.7-hydroxymethyl chlorophyll (Chl) a reductase (HCAR) plays critical roles in the Chl cycle and degradation during leaf senescence, however, its function in horticultural crops remains unknown. Here, we identified an HCAR gene (CsHCAR) from cucumber (Cucumis sativus L.) and investigated its roles in response to dark-induced Chl degradation. CsHCAR encoded 459 amino acids, which were orthologous to Arabidopsis HCAR, had the conserved domains, and localized in the chloroplast. Gene expression analysis showed that CsHCAR expression was the highest in senescent leaves and was responsive to different stresses and phytohormone treatments. Overexpression of CsHCAR in tobacco accelerated dark-induced Chl degradation through enhancing the expression of Chl catabolic genes. After 10 d of darkness treatment, the biomass of CsHCAR overexpression plants was reduced. Furthermore, the value of net photosynthetic rate, maximum quantum yield of photosystem II, and effective quantum yield of photosystem II in CsHCAR overexpression plants was significantly reduced in comparison to that in wild-type (WT) plants.

Autoři článku: Helbokuhn0160 (Weinreich Massey)