Garrisonchandler8751

Z Iurium Wiki

Verze z 9. 10. 2024, 19:34, kterou vytvořil Garrisonchandler8751 (diskuse | příspěvky) (Založena nová stránka s textem „Savanna fires occurring in sub-Saharan Africa account for over 60% of global fire extent, of which more than half occurs in the Southern Hemisphere contrib…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Savanna fires occurring in sub-Saharan Africa account for over 60% of global fire extent, of which more than half occurs in the Southern Hemisphere contributing ~29% of global fire emissions. Building on experience in reducing savanna fire emissions in fire-prone north Australian savannas through implementation of an internationally accredited 'savanna burning' emissions abatement methodology, we explore opportunities and challenges associated with the application of a similar approach to incentivise emissions reduction in fire-prone southern African savannas. We first show that for a focal region covering seven contiguous countries, at least 80% of annual savanna large fire (>250 ha) extent and emissions occur under relatively severe late dry season (LDS) fire-weather conditions, predominantly in sparsely inhabited areas. We then assess the feasibility of adapting the Australian emissions abatement methodology through exploratory field studies at the Tsodilo Hills World Heritage site in north-west Botswana, and the Niassa Special Reserve in northern Mozambique. Our assessment demonstrates that application of a savanna burning emissions abatement method focused on the undertaking of strategically located early dry season (EDS) burning to reduce LDS wildfire extent and resultant emissions meets key technical criteria, including LDS fine fuels tend to be markedly greater than EDS fuels given seasonal leaf litter inputs; LDS fires tend to be significantly more severe and combust more fuels; methane and nitrous oxide emission factors are essentially equivalent in EDS and LDS periods under cured fuel conditions. In discussion we consider associated key implementation challenges and caveats that need to be addressed for progressing development of savanna burning methods that incentivise sustainable fire management, reduce emissions, and support community livelihoods in wildfire-dominated southern African savannas.This study focused on evaluating factors influencing the growth of perennial shrubs by integrating field-based experiments and spatial analysis using unmanned aerial vehicles (UAVs) to identify ecological indicators that can help detect potential locations for restoration and revegetation of native plants. The experiment was implemented in the Al-Abduli protected area in Kuwait, which is mainly dominated by a Rhanterium epapposum community (desert shrub). Aerial imagery of the study site was acquired using UAVs during the growing season to estimate the desert shrub biomass and carbon stock. Then, soil samples were collected based on vegetation density to determine the impact of the soil's physical and chemical properties on vegetation biomass, growth, and distribution. It was found that shrub biomass was significantly correlated with crown area and shrub volume. We also observed that annual plants support the growth of perennial shrubs, as the mean shrub height and crown area (CA) are significantly higher, with averages of 0.7 m and 3 cm, respectively, in the presence of high annual plant density. However, shrubs in plots with low annual density had an average shrub height of 0.5 m and CA of 1.4 cm. Annual plants also enhance the soil by providing approximately 50% higher soil moisture, phosphorous (P), organic matter (OM), and carbon dioxide (CO2) sequestration. In addition, annual plants are mainly supported by loamy soils in the deeper soil layers. We concluded that locations covered with annual plants represent suitable soils and that this can be considered a biological indicator for convenient locations for restoration and revegetation of native perennial shrubs. Remote sensing technologies could be utilized for initial assessments to detect sites that may support annual plant growth over a large scale for classification as potential restoration and revegetation areas.Disinfection is a crucial step during the water treatment process due to the significant risks of water contamination with human and animal excreta. The development of innovative disinfection technologies that can be applied at water point of use, avoiding contamination problems in water distribution systems and reservoirs, are needed. Thus, the present work aimed at assessing the disinfection efficiency of iron oxide magnetic nanoparticles (MNPs) modified with different compounds, such as carbon nanotubes, copper and silver, in water solutions contaminated with bacteria. Kinetic and influence of nanoparticles concentration experiments, performed with Escherichia coli, allowed to define the optimal reaction conditions to apply in batch experiments (1 min of contact time and 50 mg/mL of MNPs). During these experiments, CuFeO/CNT, C-FeO@CVD750 and 5% Ag/FeO were selected as the most efficient presenting log reduction values of 2.99, 1.50 and 2.11, respectively; however, experiments performed with Staphylococcus aureus suspension and a mixed bacterial suspension (E. coli + S. aureus) allowed to observe a slight decrease in nanomaterials efficiency, which was more evident for C-FeO@CVD750 and 5% Ag/FeO materials achieving efficiencies of 94 and 83% (corresponding log reductions of 1.26 and 0.77, respectively). RTA-408 nmr CuFeO/CNT nanoparticles proved to be the most efficient material for both bacteria removal presenting an efficiency of 99% (corresponding log reduction of 1.99) for the mixed bacterial suspension. These nanoparticles proved to have great stability over successive experiments, and the low leaching values of the metals present in their composition after reaction proved the resistance and efficiency of these magnetic nanoparticles.This study seeks to examine the extent to which the level of municipal environmental management affects and complies with the behavioral norms of urban communities (city norms), and to what extent these affect environmental behavior at the individual level. We used a two-step, mixed-methods approach a quantitative study of a representative sample of the urban sector (n = 1000) in Israel, followed by a qualitative in-depth interview process (n = 20). Municipal environmental management was found to be strongly correlated with city norms. Multiple regression analyses revealed that the residents' environmental behavior was strongly influenced solely by city norms (and not by the municipal council's conduct). However, our interviews revealed that residents explicitly attributed their pro- or anti-environmental behavior almost solely to the municipal council's conduct (and not to city norms). These relative contributions of municipal environmental management versus city norms on environmental behavior varied across environmental domains. In the Discussion section, we offer an explanation to the seemingly contradictory findings, and offer specific recommendations for several actions and initiatives that local authorities can adopt to promote pro-environmental behavior among its residents' and thus reduce the ecological footprint of the city as a whole.This review details the current information on e-waste treatment using plasma technology. The current status of e-waste treatment via plasma technology from the scientific literature is presented herein, namely, moist paste battery, galvanic sludge, resin, printed circuit board, and semiconductor industries. The concept of plasma technology, classification of e-waste, contaminants of e-waste (metals, metalloids, and VOCs), and vitrification of the final product are presented herein. This review paper focuses on fusing flux agents to vitrify e-waste. Furthermore, this paper covers laboratory-scale investigations, plasma technology benefits, and reuse of material from plasma post-treatment. The use of plasma technology combined with flux agents could be recommended to eliminate contaminants from e-waste. Materials from plasma post-treatment may also be applied in environmental reuse applications.The construction industry has aided rapid urbanization in China, significantly contributing to CO2 emissions. However, few studies have investigated the impacts of urbanization on CO2 emissions from the construction industry and the regional heterogeneity or considered the construction-related factors for urban construction scale to represent urbanization. To compensate for these limitations, this study aimed to explore the impacts of urbanization on CO2 emissions from the construction industry. Herein, the urban construction scale was used to represent urbanization, along with population size, economic growth, and technology level. An augmented Stochastic Impacts by Regression on Population, Affluence, and Technology model was used to estimate the cross-province panel data from three regions in China during 2008-2017. The heterogeneity due to regional differences in urbanization levels was addressed by classifying China into three regions- urbanized, urbanizing, and under-urbanized. The findings suggest thaties to mitigate the construction industry's carbon emissions.The design and implementation of pre-fire management strategies in heterogeneous landscapes requires the identification of the ecological conditions contributing to the most adverse effects of wildfires. This study evaluates which features of pre-fire vegetation structure, estimated through broadband land surface albedo and Light Detection and Ranging (LiDAR) data fusion, promote high wildfire damage across several fire-prone ecosystems dominated by either shrub (gorse, heath and broom) or tree species (Pyrenean oak and Scots pine). Topography features were also considered since they can assist in the identification of priority areas where vegetation structure needs to be managed. The case study was conducted within the scar of a mixed-severity wildfire that occurred in the Western Mediterranean Basin. Burn severity was estimated using the differenced Normalized Burn Ratio index computed from Sentinel-2 multispectral instrument (MSI) Level 2 A at 10 m of spatial resolution and validated in the field using the high burn severity outcome together with horizontal and vertical fuel continuity (accuracy = 71%). The findings of this study support the fusion of LiDAR and satellite albedo data to assist forest managers in the development of ecosystem-specific management actions aimed at reducing wildfire damage and promote ecosystem resilience.There is a huge risk of contamination of water bodies due to the various oil exploration, transport, and industrial operational activities that are taking place across the world. Physical remediation techniques are considered extremely important for tackling the problems of marine oil spills. This paper provides a unique, specific review on the physical remediation of marine oil spills with special emphasis on types of available physical remediation techniques and their working principles. It also describes the chief latest improvements in the physical remediation techniques that have taken place with time. The paper discusses the various ways by which oil and its derivatives contaminate, and the subsequent effects these contaminants have on the marine ecosystem. The article discusses salient features that make physical remediation an effective marine oil spill counter-measure capable of recovering appreciable amounts of oil while causing minimal or no damage to the marine ecosystem and the workers carrying out the cleanup.

Autoři článku: Garrisonchandler8751 (Bennett Collier)