Donahuesears9529

Z Iurium Wiki

Verze z 9. 10. 2024, 19:30, kterou vytvořil Donahuesears9529 (diskuse | příspěvky) (Založena nová stránka s textem „Humans have the ability to permanently alter aquatic ecosystems and the introduction of species is often the most serious alteration. Non-native Smallmouth…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Humans have the ability to permanently alter aquatic ecosystems and the introduction of species is often the most serious alteration. Non-native Smallmouth Bass (Micropterus dolomieu) were identified in Miramichi Lake c. 2008, which is a headwater tributary to the Southwest Miramichi River, a renowned Atlantic Salmon (Salmo salar) river whose salmon population is dwindling. A containment programme managed by the Department of Fisheries and Oceans, Canada (DFO) was implemented in 2009 to confine Smallmouth Bass (SMB) to the lake. We utilized environmental DNA (eDNA) as a detection tool to establish the potential escape of SMB into the Southwest Miramichi River. We sampled at 26 unique sites within Miramichi Lake, the outlet of Miramichi Lake (Lake Brook), which flows into the main stem Southwest Miramichi River, and the main stem Southwest Miramichi River between August and October 2017. We observed n = 6 positive detections located in the lake, Lake Brook, and the main stem Southwest Miramichi downstream of the lake. No detections were observed upstream of the confluence of Lake Brook and the main stem Southwest Miramichi. The spatial pattern of positive eDNA detections downstream of the lake suggests the presence of individual fish versus lake-sourced DNA in the outlet stream discharging to the main river. Smallmouth Bass were later confirmed by visual observation during a snorkeling campaign, and angling. Our results, both eDNA and visual confirmation, definitively show Smallmouth Bass now occupy the main stem of the Southwest Miramichi. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Climate change is expected to create novel environments in which extant species cannot persist, therefore leading to the loss of them and their associated ecological functions within the ecosystem. However, animals may employ behavioral mechanisms in response to warming that could allow them to maintain their functional roles in an ecosystem despite changed temperatures. Specifically, animals may shift their activity in space or time to make use of thermal heterogeneity on the landscape. However, few studies consider the role of behavioral plasticity and spatial or temporal heterogeneity in mitigating the effects of climate change. We conducted experiments to evaluate the potential importance of behavior in mediating the net effects of warming on white-tailed deer (Odocoileus virginianus). We used shade structures to manipulate the thermal environment around feeding stations to monitor deer feeding activity and measure total consumption. In individual experiments where deer only had access to unshaded feeders, deer fed less during the day but compensated by increasing feeding during times when temperature was lower. In group experiments where deer had access to both shaded and unshaded feeders, deer often fed during the day but disproportionally preferred the cooler, shaded feeders. Our results suggest that deer can capitalize on temporal and spatial heterogeneity in the thermal environment to meet nutritional and thermal requirements, demonstrating the importance of behavioral plasticity when predicting the net effects of climate change. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. The study of such interaction could be more challenging in nuptial gift-giving species due to the direct nutritional effects on both sexes of both species during copulation. We mapped the distribution of two sister bush-cricket species, Pholidoptera aptera and Pholidoptera transsylvanica, at the northern margin of their overlapping ranges in Europe, and with a behavioral experiment, we tested the possibility of heterospecific mating. We found a very rare coexistence of species locally (0.5%, n = 391 sites) with mostly mutually exclusive distribution patterns, resulting in a mosaic pattern of sympatry, whereas they occupied the same climate niche in forest-dominated mountain landscape. Over 14 days of a mating experiment with seven mixed groups of conspecifics and heterospecifics (n = 56 individuals in total), the number of received spermatophores per female was 3-6 in P. aptera and 1-7 in P. transsylvanica. In total, we found 8.1% of heterospecific copulations (n = 99 transferred spermatophores with genetic identification of the donor species), while we also confirmed successful transfer of heterospecific sperms into a female's reproductive system. Because bush-cricket females also obtain required nutrition from a heterospecific spermatophylax what should increase their fitness and fecundity, we suggest that their flexibility to mate with heterospecifics is beneficial and drives reproductive interference. This may substantially limit the reproductive success of the less frequent species (P. transsylvanica), coupled with eventual detrimental effects from hybridization, and result in the competitive exclusion of that species from their areas of coexistence. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.The endosperm cell walls of mature coffee seeds accumulate large amounts of mannan storage polysaccharides, which serve as nutrient reserve for embryo and contribute to beverage quality. Our study investigated the evolutionary patterns of key galactomannan (GM) biosynthesis genes using d N/d S ratio, synteny, and phylogenetic analysis and detected heterogeneity in rate of evolution among gene copies. Selection ratio index revealed evidence of positive selection in the branch editing gene Coffea canephora alpha (α) galactosidase (Cc-alpha Gal) at Cc11_g15950 copy (ω = 1.12), whereas strong purifying selection on deleterious mutations was observed in the Coffea canephora uridine diphosphate (UDP)-glucose 4'-epimerase (Cc-UG4E) and Coffea canephora mannose-1P guanylytransferase (Cc-MGT) genes controlling the crucial nucleotide carbon sugar building blocks flux in the pathway. LBH589 Relatively low sequence diversity and strong syntenic linkages were detected in all GM pathway genes except in Cc-alpha Gal, which suggests a correlation between selection pressure and nucleotide diversity or synteny analysis.

Autoři článku: Donahuesears9529 (Bundgaard Bell)