Eatonryberg7100

Z Iurium Wiki

Verze z 9. 10. 2024, 15:21, kterou vytvořil Eatonryberg7100 (diskuse | příspěvky) (Založena nová stránka s textem „In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was inves…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas taiwanensis VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from Caulobacter crescentus into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m-2 d-1 were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50-60%) of rotating bed cassettes, side-products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70-80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m-2 d-1 and a substrate conversion of 60% was achieved in the RBR.Quantitative characterization of biotechnological production processes requires the determination of different key performance indicators (KPIs) such as titer, rate and yield. Classically, these KPIs can be derived by combining black-box bioprocess modeling with non-linear regression for model parameter estimation. The presented pyFOOMB package enables a guided and flexible implementation of bioprocess models in the form of ordinary differential equation systems (ODEs). By building on Python as powerful and multi-purpose programing language, ODEs can be formulated in an object-oriented manner, which facilitates their modular design, reusability, and extensibility. Once the model is implemented, seamless integration and analysis of the experimental data is supported by various Python packages that are already available. In particular, for the iterative workflow of experimental data generation and subsequent model parameter estimation we employed the concept of replicate model instances, which are linked by common sets of parameters with global or local properties. For the description of multi-stage processes, discontinuities in the right-hand sides of the differential equations are supported via event handling using the freely available assimulo package. Optimization problems can be solved by making use of a parallelized version of the generalized island approach provided by the pygmo package. Furthermore, pyFOOMB in combination with Jupyter notebooks also supports education in bioprocess engineering and the applied learning of Python as scientific programing language. Finally, the applicability and strengths of pyFOOMB will be demonstrated by a comprehensive collection of notebook examples.The unicellular extremophilic red alga Galdieria sulphuraria is capable of chemoheterotrophy and its growth has been investigated on some defined and undefined substrates. In this study, the removal of sugars in wastewater from fruit-salad production with G. sulphuraria strain SAG 21.92 was analyzed. Growth and sugar consumption were determined under variation of temperature, pH-value and concentration of a model substrate, containing sucrose, glucose and fructose. In shake flask cultivation maximum specific growth rate and specific substrate consumption rate of 1.53±0.09 day-1 and 2.41±0.14 gSub·gDW -1·day-1 were measured at pH 2 and 42°C. A scale-up of this process was conducted in a 3 L stirred tank reactor (STR). Wastewater from fruit-salad production was diluted to 15 g·L-1 total sugar concentration, supplemented with micronutrients and ammonia and pH was set to 3. Determined growth rate and substrate consumption were 1.21 day-1 and 1.88 gSub·gDW -1·day-1, respectively. It was demonstrated, that high sugar concentrations in wastewater streams from food production processes can be significantly reduced with G. sulphuraria SAG 21.92. This strain could achieve substrate consumption rates in wastewater, equal to the more common strain 074G, but at higher pH values. https://www.selleckchem.com/products/ly-411575.html Generated biomass can be used for production of phycocyanin, a valuable nutraceutical.Exopolysaccharides (EPS) from Streptococcus thermophilus provide similar technofunctionality such as water binding, viscosity enhancing and emulsifying effects as commercial thickeners at a significant lower concentration. Despite their high technofunctional potential, hetero polysaccharides from lactic acid bacteria are still not commercially used in unfermented foods, as the small amount of synthesised EPS calls for a high isolation effort. This study aims to analyse the macromolecular properties of EPS and cell containing isolates from S. thermophilus DGCC7710 obtained by different isolation protocols, and to link these data to the technofunctionality in model food systems. The EPS content of the isolates was affected by the microfiltration/ultrafiltration membranes used for cell removal/dialysis, respectively, and was 89% at maximum. There was no link between purity of the isolates, molecular mass (3 × 106 Da) and intrinsic viscosity (0.53 - 0.59 mL/mg) of the EPS. After adding EPS containing isolates to milk, gel stiffness after acidification increased by 25% at maximum, depending on the type and concentration of the specific isolate. Partly purified, cell containing isolates were effective at low absolute EPS concentration (approx. 0.1 g/kg) and therefore represent, together with their simple isolation protocol, an interesting approach to introduce microbial EPS into non-fermented products.In this report, a fully integrated solution for laboratory digitization is presented. The approach presents a flexible and complete integration method for the digitally assisted workflow. The worker in the laboratory performs procedures in direct interaction with the digitized infrastructure that guides through the process and aids while performing tasks. The digital transformation of the laboratory starts with standardized integration of both new and "smart" lab devices, as well as legacy devices through a hardware gateway module. The open source Standardization in Lab Automation 2 standard is used for device communication. A central lab server channels all device communication and keeps a database record of every measurement, task and result generated or used in the lab. It acts as a central entry point for process management. This backbone enables a process control system to guide the worker through the lab process and provide additional assistance, like results of automated calculations or safety information.

Autoři článku: Eatonryberg7100 (Boye Corcoran)