Mccartymacpherson7702

Z Iurium Wiki

Verze z 9. 10. 2024, 15:09, kterou vytvořil Mccartymacpherson7702 (diskuse | příspěvky) (Založena nová stránka s textem „Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previ…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.Long-lasting insecticide treated netting (LLIN) has a number of potential uses for the control of insect pests. Using such netting, stored products may be protected from insects including the khapra beetle (Trogoderma granarium Everts, Coleoptera Dermestidae) a widespread pest of many agricultural commodities. Here we first examined whether brief exposures of larvae to LLIN, for less than 30 min, decreased the chance of eventual adult emergence compared to larvae exposed on untreated netting. Next, we observed the responses of larvae that were either not exposed to any netting, exposed to untreated netting, or exposed to LLIN for 10 min and then placed in a wind tunnel and monitored for movement toward a stimulus. The wind-tunnel assay was performed either with or without a lure containing kairomones and pheromones known to be attractive to larvae of this species. There was little effect of the LLIN on adult emergence of exposed larvae. However, there were interacting effects of untreated netting and LLIN relating to thigmotaxis and anemotaxis. Larvae not exposed to netting showed increased likelihood of walking upwind if the semiochemical lure was provided, as expected. A similar pattern was observed when the untreated netting was used, but the larvae became more likely to remain stationary in the assay after acclimating to the net. When LLIN was used, the larvae became more likely to move and there was a baseline increase in the likelihood of moving upwind. However, upwind walking was no longer related to semiochemical presentation. These observations suggest that particular care should be used in relation to the airflow patterns and semiochemical landscape of the warehouse settings in which LLIN is deployed.Insecticide resistance in pest populations is an increasing problem in both urban and rural settings due to over-application of insecticides and lack of rotation among insecticidal chemical classes. The house fly (Musca domestica L.) is a cosmopolitan pest fly species implicated in the transmission of numerous pathogens. The evolution of insecticide resistance long has been documented in house flies, with resistance reported to all major insecticide classes. House fly resistance to imidacloprid, the most widely used neonicotinoid insecticide available for fly control, has evolved in field populations through both physiological and behavioral mechanisms. Previous studies have characterized and mapped the genetic changes that confer physiological resistance to imidacloprid, but no study have examined the genetics involved in behavioral resistance to imidacloprid to date. In the current study, several approaches were utilized to characterize the genetics and inheritance of behavioral resistance to imidacloprid in the house fly. These include behavioral observation analyses, preference assays, and the use of genetic techniques for the identification of house fly chromosome(s) carrying factors. Behavioral resistance was mapped to autosomes 1 and 4. Inheritance of resistance was shown to be neither fully dominant nor recessive. Factors on autosomes 1 and 4 independently conferred contact-dependent avoidance of imidacloprid and a feeding preference for sugar alone or for sugar with dinotefuran, another neonicotinoid insecticide, over imidacloprid. This study serves as the first linkage analysis of a behavioral trait in the house fly, and provides new avenues for research regarding inherited behavior in the house fly and other animals.A series of new 1-tert-butyl-5-amino-4-pyrazole bioxadiazole sulfide derivatives containing a 1,3,4-oxadiazole moiety were designed and synthesized. The bioactivity results showed that some title compounds exhibited excellent protective activity against TMV and certain insecticidal activity. Among the tested compounds, the EC50 values of 5d, 5j, 5k and 5l were 165.8, 163.2, 159.7 and 193.1 mg/L, respectively, which are better than the EC50 value of ningnanmycin (271.3 mg/L). The chlorophyll contents and the defense enzyme activities of the tobacco leaves after treatment with 5j were significantly increased, which indicated that this series of title compounds may induce the systemic acquired resistance of host to defend against diseases. Further in vivo protective activity research on 5j using TMV with a GFP gene tag found that it can effectively inhibit the spread of TMV in inoculated tobacco. A morphological study with TEM revealed that title compound 5h can cause a distinct break of the rod-shaped TMV. Moreover, the insecticidal activity revealed that the fatality rates of 5a, 5b and 5m against aphidoidea were 85%, 83% and 87%, respectively, which indicated that the title compounds can effectively block the common carrier of plant viruses, thereby effectively reducing the TMV infection risk of tobacco. This series of synergistic effects provide key information for the research and development of antiviral agents.Cyhalofop-butyl resistance in Leptochloa chinensis (L.) Nees is a threat to rice production. Qualitative changes to the acetyl-CoA carboxylase gene (ACCase) have been reported to induce cyhalofop-butyl resistance in some weed species, but the role of ACCase in cyhalofop-butyl resistance through quantitative changes remains uncertain. The accurate assessment of transcriptional changes in the functional genes associated with herbicide resistance in L. chinensis is challenging owing to the lack of available reference genes for expression normalization. Here, we selected nine candidate reference genes in L. chinensis and assessed their transcription stability in populations susceptible and resistant to cyhalofop-butyl. Transcription stability was compared under conditions of herbicide stress and control conditions using BestKeeper, NormFinder, and geNorm. Elongation factor 1 alpha, eukaryotic initiation factor 4A, and cap-binding protein CBP20 were the most stable reference genes under cyhalofop-butyl treatment. Transcription levels of ACCase were evaluated in seven resistant populations, one of which showed higher transcription than the susceptible population after 24 h cyhalofop-butyl treatment. However, the slight up-regulation of ACCase (approximately 2.0-fold) is unlikely to be responsible for the high resistance levels in these populations of L. chinensis.American sloughgrass (Beckmannia syzigachne Steud.) has become a dominant weed in fields with rice-wheat rotation. Moreover, herbicide resistance has rendered weed control difficult. We identified a biotype showing resistance to ALS inhibitor mesosulfuron-methyl with a resistant index 3.3, but without any ALS mutation. This study aims to identify and confirm the factors associated with non-target site resistance of this biotype to mesosulfuron-methyl using RNA-Seq. 118,111 unigenes were assembled, and 50.9% of these were annotated across seven databases. Eleven contigs related to metabolic resistance were identified based on differential expression via RNA-Seq which include a novel resistance-related transcription factor (MYC3) and two disease resistance proteins were also identified (At1g58602 and At1g15890). Fold changes in expression of these genes in comparison M-R vs. M-S ranged from 3.9 to 11.6, as confirmed by qPCR. selleck products The expression of a contig annotated as cytochrome P450 (CYP86B1) in resistant individuals was over 3 times higher than that in sensitive individuals at 0-72 h after mesosulfuron-methyl treatment. link2 A similar trend was noted for three other genes annotated as glutathione S-transferase (GST), namely GST-T3, GST-U6, and GST-U14; the expression of GST-U6 in resistant individuals was up to 142.3 times higher than that in sensitive individuals at 24 h after mesosulfuron-methyl treatment. In addition, GST activity in resistant individuals was 2.1 to 5.3 times higher than that in sensitive individuals. The GR50 of resistant biotype decreased from 24.4 to 11.3 g a.i. ha-1 after P450 inhibitor malathion treatment. This study identified a cytochrome P450 gene CYP86B1 and three GST genes GST-T3, GST-U6, and GST-U14 that have higher expression in mesosulfuron-methyl resistant B. syzigachne, suggesting that both P450- and GST-based activities could be involved in resistance.In the European Union (EU), regulation of sterol demethylation inhibiting (DMI) fungicides is tightened due to their suspected endocrine disrupting properties. However, the new DMI fungicide mefentrifluconazole was reported to have high fungicidal activity with minimal adverse side effects. In addition, some evidence suggests inconsistent cross resistance between mefentrifluconazole and other azoles. In this study, mefentrifluconazole and other triazoles were examined for activity to select pathogens sensitive or resistant to DMIs using mycelial growth tests on fungicide-treated culture medium or spray trials using cucumber plants. Cross-resistance was confirmed for all of the fungal species tested but activity levels varied. The sensitivity of Monilinia fructicola from peach to mefentrifluconazole was higher compared to other DMIs. In contrast, the inhibitory activity of mefentrifluconazole was equal or slightly inferior compared to difenoconazole, tebuconazole, propiconazole in Colletotrichum spp., Alternaria alternaria sp. complex and Cercospora beticola isolated from peach and sugar beet, respectively. Similar tendencies (i.e. equal or slightly inferior activity and cross-resistance) were observed for cucumber powdery mildew (Podosphaera xanthii) resistant to triflumizole, myclobutanil, and difenoconazole. link3 Despite cross-resistance to other DMIs, mefentrifluconazole is a promising fungicide for fungal disease control on peach and other crops, with a reportedly more favorable toxicity profile.

Autoři článku: Mccartymacpherson7702 (Kofoed Gould)