Beringhermansen7242

Z Iurium Wiki

Verze z 8. 10. 2024, 21:24, kterou vytvořil Beringhermansen7242 (diskuse | příspěvky) (Založena nová stránka s textem „Homogeneous cationic gold(i) catalysis emerged as a preferred avenue for the activation of alkenes and alkynes towards reactions with weak nucleophiles, es…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Homogeneous cationic gold(i) catalysis emerged as a preferred avenue for the activation of alkenes and alkynes towards reactions with weak nucleophiles, especially in cyclization reactions. Here we report an intramolecular carboalkoxylation reaction of electron-rich benzyl ethers of 2-ethynylaryl phenols catalysed by a digold(i)-NHC complex. The reaction proceeds efficiently with low catalyst loading and the resulting 2,3-disubstituted benzofurans form in moderate to good yields. Based on the results of a cross-over experiment, spectroscopic data, and DFT calculations, we propose a mechanism that accounts for the observed chemo- and regioselectivity.Many diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry. However, efficient loading of sensitive cargo, such as proteins, and introducing functional enzyme-responsive behaviour remain challenging. Herein, peptide-crosslinked, temperature-sensitive nanogels for protein delivery were designed to respond to MMP-7, which is overexpressed in many pathologies including cancer and inflammatory diseases. The incorporation of N-cyclopropylacrylamide (NCPAM) into N-isopropylacrylamide (NIPAM)-based copolymers enabled us to tune the polymer lower critical solution temperature from 33 to 44 °C, allowing the encapsulation of protein cargo and nanogel-crosslinking at slightly elevated temperatures. This approach resulted in nanogels that were held together by MMP-sensitive peptides for enzyme-specific protein delivery. We employed a combination of cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle neutron scattering (SANS), and fluorescence correlation spectroscopy (FCS) to precisely decipher the morphology, self-assembly mechanism, enzyme-responsiveness, and model protein loading/release properties of our nanogel platform. Simple variation of the peptide linker sequence and combining multiple different crosslinkers will enable us to adjust our platform to target specific diseases in the future.A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.Biofouling has long been a problem for biomaterials, so being able to control the fouling on the surface of a biomaterial would be ideal. In this study a copolymer system was designed comprising three moieties an epoxy containing group, glycidyl methacrylate (GMA); a thermoresponsive segment, N-isopropylacrylamide (NIPAAm); and an antifouling zwitterionic unit, sulfobetaine methacrylate (SBMA). The copolymers (pGSN), synthesized via free radical polymerization with these 3 moieties, were then grafted onto polydimethylsiloxane (PDMS). The presence of a critical temperature for both the copolymers and the coated PDMS was evidenced by particle size and contact angle measurements. The coated PDMS exhibited controllable temperature-dependent antifouling behaviors and stimuli-responsive phase characteristics in the presence of salts. The interactions of the coated PDMS with biomolecules were tested via attachment of fibrinogen protein, platelets, human whole blood, and tumor cells (HT1080). The attachment and detachment of these biomolecules were studied at different temperatures. Exposed hydrophobic domains of thermoresponsive NIPAAm-rich pGSN containing NIPAAm at 56 mol% generally allows molecular and cellular attachment on the PDMS surface at 37 °C. On the other hand, the coated PDMS with a relatively high content of SBMA (>41 mol%) in the copolymer started to exhibit fouling resistance and lower the thermoresponsive properties. Interestingly, the incorporation of zwitterionic SBMA units into the copolymers was found to accelerate the hydration of the PDMS surfaces and resulted in biomolecular and cellular detachment at 25 °C, which is comparable to the detachment at 4 °C. This modified surface behavior is found to be consistent through all biofouling tests.We report the synthesis, ESR spectroscopic and spin coherent properties of the dimetallofullerene Sc2@C80(CH2Ph). The single-electron metal-metal bond of the Sc2 dimer inside the fullerene's cage is stabilized with the electron spin density being fully localized at the metal bond. This results in an extraordinary strong hyperfine interaction of the electron spin with the 45Sc nuclear spins with a coupling constant a = 18.2 mT (∼510 MHz) and yields a fully resolved hyperfine-split ESR spectrum comprising 64 lines. The splitting is present even at low temperatures where the molecular dynamics are completely frozen. The large extent and the robustness of the hyperfine-split spectra enable us to identify and control the well-defined transitions between specific electron-nuclear quantum states. This made it possible to demonstrate in our pulse ESR study the remarkable spin coherent dynamics of Sc2@C80(CH2Ph), such as the generation of arbitrary superpositions of the spin states in a nutation experiment and the spin dephasing times above 10 μs at temperatures T less then 80 K reaching the value of 17 μs at T ≤ 20 K. These observations suggest Sc2@C80(CH2Ph) as an interesting qubit candidate and motivate further synthetic efforts to obtain fullerene-based systems with superior spin properties.Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g. fabrication of implants), for engineering a 3D all-polymer flexible interface that enhances cell proliferation by a factor of ca. three. A hierarchical construction process consisting of three steps was engineered as follows (1) functionalization of i-PP by applying a plasma treatment, resulting in i-PPf; (2) i-PPf surface coating with a layer of polyhydroxymethy-3,4-ethylenedioxythiophene nanoparticles (PHMeEDOT NPs) by in situ chemical oxidative polymerization of HMeEDOT; and (3) deposition on the previously activated and PHMeEDOT NPs coated i-PP film (i-PPf/NP) of a graft conjugated copolymer, having a poly(3,4-ethylenedioxythiophene) (PEDOT) backbone, and randomly distributed short poly(ε-caprolactone) (PCL) side chains (PEDOT-g-PCL), as a coating layer of ∼9 μm in thickness. The properties of the resulting bioplatform, which can be defined as a robust macroscopic composite coated with a "molecular composite", were investigated in detail, and both adhesion and proliferation of two human cell lines have been evaluated, as well. The results demonstrate that the incorporation of the PEDOT-g-PCL layer significantly improves cell attachment and cell growth not only when compared to i-PP but also with respect to the same platform coated with only PEDOT, constructed in a similar manner, as a control.Direct C(sp2)-H functionalization of the endocyclic azomethine and aldonitrone moieties in non-aromatic azaheterocycles has established itself as a promising methodology over the last decade. Transition metal-catalyzed cross-coupling reactions, α-metalation-electrophile quenching protocols, and (metal-free) nucleophilic substitution of hydrogen reactions (SNH) are the major routes applied on cyclic imines and their derivatives. In this overview, we show the tangible progress made in this area during the period from 2008 to 2020.Reactive oxygen species (ROS) overproduction is involved in many pathological processes, particularly in inflammatory diseases. Therefore, ROS-responsive nanocarriers for specific drug release have been highly sought after. Herein we developed a ROS-responsive drug delivery system based on covalently self-assembled polymer nanocapsules (Azo-NCs) formed via crosslinking macrocyclic cucurbit[6]urils by a photo-sensitive azobenzene derivative (Azo). Luminol, a chemiluminescent molecule activatable by ROS, was co-loaded into Azo-NCs together with a therapeutic payload. When exposed to high ROS concentration that is typically encountered in inflammatory cells or tissues, the ROS-initiated blue chemiluminescence of luminol drives photoisomerization of the Azo groups within Azo-NCs, leading to Azo-NCs' surface transformation and distortion of the nanostructure, and subsequent payload release. As a proof-of-concept, ROS-responsive payload release from luminol-loaded Azo-NCs in inflammatory cells and zebrafish was demonstrated, showing promising anti-inflammatory effects in vitro and in vivo.Hydrogels have been widely used in wound healing treatment over the past decade. see more Injectable hydrogels have become a major research focus due to their unique advantages. Compared to traditional hydrogels, injectable hydrogels have good fluidity. When injected into the wound as a solution, they form a gel in situ that can fill the wound in three dimensions. This enables them to reach deep and irregular wounds that traditional hydrogels cannot fill. Injectable hydrogels greatly reduce the need for invasive surgery and are well-suited for chronic wound repair. This review article categorizes hydrogels that are commonly used in chronic wound repair according to their sources and reviews the current applications of the different types of injectable hydrogels in chronic wound repair.The synthesis and application of compounds with Cr-Cr and V-V d-d quintuple bonds (σ, 2π, 2δ) have led to new thinking about whether d-d multiple bonds also exist between early transition metals such as Sc-Sc and Ti-Ti. In this study, by extensive unbiased global search at the density functional theory level, the low-energy structures of 26e and 30e TM2Lin clusters were obtained. Based on the super valence bond (SVB) theory, the prolate double-core structure of TM2Lin clusters was regarded as a superatomic molecule, of which each half was regarded as an open-shell superatom, and the electronic shell-closure was realized by forming multiple bonds between superatoms. Then, the quintuple super bonds (2δ, 2π, σ) of the Li18Ti2, Li20Sc2, [Li17V2]+, [Li17Ti2]- clusters and the triple super bonds (2π, σ) of the Li24Sc2 and Li24Y2 clusters were confirmed via chemical-bonding analysis. This way of forming multiple bonds between early transition metals through superatomic bonding has promoted the experimental synthesis and application of early transition metal multiple bond compounds.

Autoři článku: Beringhermansen7242 (Reyes Krag)