Pittmanhaslund1959

Z Iurium Wiki

Verze z 8. 10. 2024, 18:24, kterou vytvořil Pittmanhaslund1959 (diskuse | příspěvky) (Založena nová stránka s textem „Lastly, a real-world case study (i.e., seismic) is presented that leverages the edge storage and computing framework to acquire, transmit, store, and proce…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Lastly, a real-world case study (i.e., seismic) is presented that leverages the edge storage and computing framework to acquire, transmit, store, and process millions of samples of data per hour.Due to the poor dynamic positioning precision of the Global Positioning System (GPS), Time Series Analysis (TSA) and Kalman filter technology are used to construct the positioning error of GPS. According to the statistical characteristics of the autocorrelation function and partial autocorrelation function of sample data, the Autoregressive (AR) model which is based on a Kalman filter is determined, and the error model of GPS is combined with a Kalman filter to eliminate the random error in GPS dynamic positioning data. The least square method is used for model parameter estimation and adaptability tests, and the experimental results show that the absolute value of the maximum error of longitude and latitude, the mean square error of longitude and latitude and average absolute error of longitude and latitude are all reduced, and the dynamic positioning precision after correction has been significantly improved.From 2018 to 2021, the Sussex-Huawei Locomotion-Transportation Recognition Challenge presented different scenarios in which participants were tasked with recognizing eight different modes of locomotion and transportation using sensor data from smartphones. In 2019, the main challenge was using sensor data from one location to recognize activities with sensors in another location, while in the following year, the main challenge was using the sensor data of one person to recognize the activities of other persons. We use these two challenge scenarios as a framework in which to analyze the effectiveness of different components of a machine-learning pipeline for activity recognition. We show that (i) selecting an appropriate (location-specific) portion of the available data for training can improve the F1 score by up to 10 percentage points (p. p.) compared to a more naive approach, (ii) separate models for human locomotion and for transportation in vehicles can yield an increase of roughly 1 p. p., (iii) using semi-supervised learning can, again, yield an increase of roughly 1 p. p., and (iv) temporal smoothing of predictions with Hidden Markov models, when applicable, can bring an improvement of almost 10 p. p. Our experiments also indicate that the usefulness of advanced feature selection techniques and clustering to create person-specific models is inconclusive and should be explored separately in each use-case.Convolutional neural networks are a class of deep neural networks that leverage spatial information, and they are therefore well suited to classifying images for a range of applications [...].The millimeter-wave (mmWave) band, which can provide data rates of multi-gigabits per second, could play a major role in achieving the throughput goals of 5G networks. However, the high-bandwidth mmWave signal is susceptible to blockage by various obstacles, which results in very large and frequent degradation in the quality of the received signals. TCP, the most representative transport layer protocol, suffers from significant performance degradation due to the very dynamic channel conditions of the mmWave signal. Therefore, in this paper, we propose a congestion control algorithm that guarantees sufficient throughput in 5G mmWave networks and that does not significantly worsen TCP fairness. The proposed algorithm, which is a modification of Scalable TCP (S-TCP) that is designed for high-speed networks, provides a more stable performance than the existing TCP congestion control algorithm in mmWave networks through simple modifications. In various simulation experiments that considered the actual mobile user environment, the proposed mmWave Scalable TCP (mmS-TCP) algorithm demonstrated throughput up to 2.4 times higher than CUBIC TCP in single flow evaluation, and the inter-protocol fairness index when competing with CUBIC flow significantly improved from 0.819 of S-TCP to 0.9733. Moreover, the mmS-TCP algorithm reduced the number of duplicated ACKs by 1/4 compared with S-TCP, and it improved the average total throughput and intra-protocol fairness simultaneously.The safety of urban transportation systems is considered a public health issue worldwide, and many researchers have contributed to improving it. Connected automated vehicles (CAVs) and cooperative intelligent transportation systems (C-ITSs) are considered solutions to ensure the safety of urban transportation systems using various sensors and communication devices. However, realizing a data flow framework, including data collection, data transmission, and data processing, in South Korea is challenging, as CAVs produce a massive amount of data every minute, which cannot be transmitted via existing communication networks. Thus, raw data must be sampled and transmitted to the server for further processing. The data acquired must be highly accurate to ensure the safety of the different agents in C-ITS. On the other hand, raw data must be reduced through sampling to ensure transmission using existing communication systems. Thus, in this study, C-ITS architecture and data flow are designed, including messages and protocols for the safety monitoring system of CAVs, and the optimal sampling interval determined for data transmission while considering the trade-off between communication efficiency and accuracy of the safety performance indicators. Three safety performance indicators were introduced severe deceleration, lateral position variance, and inverse time to collision. A field test was conducted to collect data from various sensors installed in the CAV, determining the optimal sampling interval. In addition, the Kolmogorov-Smirnov test was conducted to ensure statistical consistency between the sampled and raw datasets. The effects of the sampling interval on message delay, data accuracy, and communication efficiency in terms of the data compression ratio were analyzed. Consequently, a sampling interval of 0.2 s is recommended for optimizing the system's overall efficiency.The evaluation of the biological effects of therapeutic hyperthermia in oncology and the precise quantification of thermal dose, when heating is coupled with radiotherapy or chemotherapy, are active fields of research. The reliable measurement of hyperthermia effects on cells and tissues requires a strong control of the delivered power and of the induced temperature rise. To this aim, we have developed a radiofrequency (RF) electromagnetic applicator operating at 434 MHz, specifically engineered for in vitro tests on 3D cell cultures. The applicator has been designed with the aid of an extensive modelling analysis, which combines electromagnetic and thermal simulations. The heating performance of the built prototype has been validated by means of temperature measurements carried out on tissue-mimicking phantoms and aimed at monitoring both spatial and temporal temperature variations. The experimental results demonstrate the capability of the RF applicator to produce a well-focused heating, with the possibility of modulating the duration of the heating transient and controlling the temperature rise in a specific target region, by simply tuning the effectively supplied power.The safe in-field operation of autonomous agricultural vehicles requires detecting all objects that pose a risk of collision. Current vision-based algorithms for object detection and classification are unable to detect unknown classes of objects. In this paper, the problem is posed as anomaly detection instead, where convolutional autoencoders are applied to identify any objects deviating from the normal pattern. Training an autoencoder network to reconstruct normal patterns in agricultural fields makes it possible to detect unknown objects by high reconstruction error. Basic autoencoder (AE), vector-quantized variational autoencoder (VQ-VAE), denoising autoencoder (DAE) and semisupervised autoencoder (SSAE) with a max-margin-inspired loss function are investigated and compared with a baseline object detector based on YOLOv5. Results indicate that SSAE with an area under the curve for precision/recall (PR AUC) of 0.9353 outperforms other autoencoder models and is comparable to an object detector with a PR AUC of 0.9794. Qualitative results show that SSAE is capable of detecting unknown objects, whereas the object detector is unable to do so and fails to identify known classes of objects in specific cases.The Internet of Things (IoT) is a widely used technology in automated network systems across the world. The impact of the IoT on different industries has occurred in recent years. Many IoT nodes collect, store, and process personal data, which is an ideal target for attackers. Several researchers have worked on this problem and have presented many intrusion detection systems (IDSs). The existing system has difficulties in improving performance and identifying subcategories of cyberattacks. This paper proposes a deep-convolutional-neural-network (DCNN)-based IDS. A DCNN consists of two convolutional layers and three fully connected dense layers. The proposed model aims to improve performance and reduce computational power. Experiments were conducted utilizing the IoTID20 dataset. The performance analysis of the proposed model was carried out with several metrics, such as accuracy, precision, recall, and F1-score. A number of optimization techniques were applied to the proposed model in which Adam, AdaMax, and Nadam performance was optimum. MRT68921 ic50 In addition, the proposed model was compared with various advanced deep learning (DL) and traditional machine learning (ML) techniques. All experimental analysis indicates that the accuracy of the proposed approach is high and more robust than existing DL-based algorithms.In this study, a graphene sample (EGr) was synthesized by electrochemical exfoliation of graphite rods in electrolyte solution containing 0.1 M ammonia and 0.1 M ammonium thiocyanate. The morphology of the powder deposited onto a solid substrate was investigated by the scanning electron microscopy (SEM) technique. The SEM micrographs evidenced large and smooth areas corresponding to the basal plane of graphene as well as white lines (edges) where graphene layers fold-up. The high porosity of the material brings a major advantage, such as the increase of the active area of the modified electrode (EGr/GC) in comparison with that of bare glassy carbon (GC). The graphene modified electrode was successfully tested for L-tyrosine detection and the results were compared with those of bare GC. For EGr/GC, the oxidation peak of L-tyrosine had high intensity (1.69 × 10-5 A) and appeared at lower potential (+0.64 V) comparing with that of bare GC (+0.84 V). In addition, the graphene-modified electrode had a considerably larger sensitivity (0.0124 A/M) and lower detection limit (1.81 × 10-6 M), proving the advantages of employing graphene in electrochemical sensing.There is an increasing interest about indoor positioning, which is an emerging technology with a wide range of applications [...].The Action Research Arm Test (ARAT) can provide subjective results due to the difficulty assessing abnormal patterns in stroke patients. The aim of this study was to identify joint impairments and compensatory grasping strategies in stroke patients with left (LH) and right (RH) hemiparesis. An experimental study was carried out with 12 patients six months after a stroke (three women and nine men, mean age 65.2 ± 9.3 years), and 25 healthy subjects (14 women and 11 men, mean age 40.2 ± 18.1 years. The subjects were evaluated during the performance of the ARAT using a data glove. Stroke patients with LH and RH showed significantly lower flexion angles in the MCP joints of the Index and Middle fingers than the Control group. However, RH patients showed larger flexion angles in the proximal interphalangeal (PIP) joints of the Index, Middle, Ring, and Little fingers. In contrast, LH patients showed larger flexion angles in the PIP joints of the Middle and Little fingers. Therefore, the results showed that RH and LH patients used compensatory strategies involving increased flexion at the PIP joints for decreased flexion in the MCP joints.

Autoři článku: Pittmanhaslund1959 (Wilkerson Degn)