Grantcote3343

Z Iurium Wiki

Verze z 8. 10. 2024, 14:09, kterou vytvořil Grantcote3343 (diskuse | příspěvky) (Založena nová stránka s textem „In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way to unambiguously distinguish a paradigmatic correlated insulator, a Mott insulator, from a trivial band insulator based on their distinct chemical behavior for a surface adsorbate using 1T-TaS_2, which has been debated between a spin-frustrated Mott insulator or a spin-singlet trivial insulator. We start from the observation of different sizes of spectral gaps on different surface terminations and show that potassium adatoms on these two surface layers behave in totally different ways. This can be straightforwardly understood from distinct properties of Mott and band insulators due to the fundamental difference of the half- and full-filled orbitals involved, respectively. This work not only solves an outstanding problem in this particularly interesting material but also provides a simple touchstone to identify the correlated ground state of electrons experimentally.Liquid-air interfaces can be deformed by surface-tension gradients to create topography, a phenomenon useful for polymer film patterning. A recently developed method creates these gradients by photochemically patterning a solid polymer film. Heating the film to the liquid state leads to flow driven by the patterned surface-tension gradients, but capillary leveling and diffusion of surface-active species facilitate eventual dissipation of the topography. However, experiments demonstrate that using blends of high- and low-molar-mass polymers can considerably delay the decay in topography. To gain insight into this observation, we develop a model based on lubrication theory that yields coupled nonlinear partial differential equations describing how the film height and species concentrations evolve with time and space. Incorporation of a nonmonotonic disjoining pressure is found to significantly increase the lifetime of topographical features, making the model predictions qualitatively consistent with experiments. A parametric study reveals the key variables controlling the kinetics of film deformation and provides guidelines for photochemically induced Marangoni patterning of polymer films.Several recent studies have interrogated the role of quantum coherence in affecting the transfer efficiency of an optical excitation to the designated "trap" state where the energy can be used for subsequent reactions, as in photosynthesis. However, these studies invoke a Markovian approximation for the time correlation function describing the environment-induced stochastic fluctuations. Here, we employ Kubo's quantum stochastic Liouville equation (QSLE) to include memory effects. We extend the existing QSLE scheme to introduce decay of a newly created excitation due to radiative and nonradiative channels and also by desired trapping toward the targeted chromophore. We show that the theoretical formalism based on the QSLE correctly reproduces the rate equation description in the Markovian limit, with the rate constants determined by an appropriate quantum limiting procedure. We find that under certain conditions, the efficiency of excitation transfer to the trap gains from the combined presence of quantum coherence and temporally correlated stochastic fluctuations. We work out different limiting situations in order to discover and quantify the optimum conditions for the energy transfer to the trapped state. We find that maximum energy transfer efficiency is achieved in the intermediate limit between coherent and incoherent transport.Levan-type fructooligosaccharides (LFOs) and levan can potentially be used as ingredients in prebiotics, skincare products, and antitumor agents. Ferrostatin-1 mouse The Y246S mutant of Bacillus licheniformis RN-01 levansucrase (oligosaccharide-producing levansucrase, OPL) was reported to productively synthesize LFOs; however, OPL's thermostability is low at high temperatures. To enhance OPL structural stability, this study employed molecular dynamics (AMBER) to identify a highly flexible region, as measured by its average root-mean-square fluctuation (RMSF) value, on the OPL surface and computational protein design (Rosetta) to rigidify and increase favorable interactions to increase its structural stability. AMBER identified region nine (residues 277-317) as a highly flexible region that was selected for design because it has the highest number of residues and the second-highest average RMSF, and it is farthest from the active site. Rosetta designed 14 mutants with the best ΔΔG value in each position, where three mutants have better ΔG than OPL. To determine whether their flexibilities and stabilities are lower than those of OPL, all 14 designed mutants were simulated at high temperature (500 K), and we found that K296E, G309S, and A310W mutants were predicted to be more stable and could retain their native structures better than OPL. Our results suggest that enhanced structural stabilities of these mutants are caused by increased hydrogen bond strengths of the designed residues and their neighboring residues. This study designed K296E, G309S, and A310W mutants of OPL with high potential for stability improvement, and they could potentially be used for the effective production of LFOs.With an aim to understand the mechanism of interaction between quantum dots (QDs) and various metal ions, fluorescence response of less-toxic and water-soluble glutathione-capped Zn-Ag-In-S (GSH@ZAIS) QDs in the presence of different metal ions has been investigated at both ensemble and single-molecule level. Fourier transform infrared (FT-IR) spectroscopy has also been performed to obtain a molecular level understanding of the interaction event. The steady-state data reveal no significant change in QD emission for alkali and alkaline earth metal ions, while there is a decrease in fluorescence intensity for transition metal (TM) and some heavy transition metal (HTM) ions. Interestingly, a significant fluorescent enhancement (FE) (19-96%) of QDs is found for Cd2+ ions. Time-resolved fluorescence studies reveal that all the three decay components of QDs decrease in the presence of first-row TM ions. However, in the case of Cd2+, the shorter component is found to increase while the longer one decreases. The analysis of data reveals that photoinduced electron transfer is responsible for fluorescence quenching of QDs in the presence of first-row TM ions and destruction/removal of trap/defect states in the case of Cd2+ causes the FE. In FT-IR experiments, a prominent peak at 670 cm-1, corresponding to Cd-S stretching vibrations, indicates strong ground-state interactions between the -SH of GSH and Cd2+ ions. Moreover, a decrease in the diffusion coefficient of QDs in the presence of Cd2+ ions during fluorescence correlation spectroscopy (FCS) studies further substantiates the removal of GSH by Cd2+ from the surface of QDs. The optical output of this study demonstrates that ZAIS can be used for fluorescence signaling of various metal ions and in particular selective detection of Cd2+. More importantly, these results also suggest that Cd2+ can effectively be used for enhancing the fluorescence quantum yield of thiol-capped QDs such as GSH@ZAIS.Two-dimensional metal-organic frameworks (2D-MOFs) are attracting more attention due to their unique properties. Various 2D-MOF structures have been fabricated on surfaces in which either only one kind of metal was incorporated or only one kind of noncovalent interaction was involved in a bimetallic network. However, 2D-MOFs involving different kinds of noncovalent interactions and multiple metal components are more complex and less predictable. Here, we choose the uracil (U) molecule together with alkali metals [sodium (Na) and cesium (Cs)] and a transition metal [iron (Fe)] as model systems and successfully construct two kinds of bimetallic 2D-MOFs through the synergy and competition among noncovalent interactions, which is revealed by the high-resolution scanning tunneling microscopy imaging and density functional theory calculations. link2 Such a systematic study may help to improve our fundamental understanding of the interaction mechanism of noncovalent bonds and, moreover, lead to further investigations of the unprecedented functions of surface-supported 2D-MOF structures.Cooperative effects of adjacent active centers are critical for single-atom catalysts (SACs) as active site density matters. Yet, how it affects scaling relationships in many important reactions such as the nitrogen reduction reaction (NRR) is underexplored. Herein we elucidate how the cooperation of two active centers can attenuate the linear scaling effect in the NRR through a first-principle study on 39 SACs comprised of two adjacent (∼4 Å apart) four N-coordinated metal centers (MN4 duo) embedded in graphene. Bridge-on adsorption of dinitrogen-containing species appreciably tilts the balance of adsorption of N2H and NH2 toward N2H and thus substantially loosens the restraint of scaling relationships in the NRR, achieving low onset potential (V) and direct N≡N cleavage (Mo, Re) at room temperature, respectively. The potential of the MN4 duo in the NRR provides new insight into circumventing the limitations of scaling relationships in heterogeneous catalysis.The creation, transfer, and stabilization of localized excitations are studied in a donor-acceptor Frenkel exciton model in an atomistic treatment of reduced-size double quantum dots (QDs) of various sizes. The explicit time-dependent dynamics simulations carried out by hybrid time-dependent density functional theory/configuration interaction show that laser-controlled hole trapping in stacked, coupled germanium/silicon quantum dots can be achieved by a UV/IR pump-dump pulse sequence. The first UV excitation creates an exciton localized on the topmost QD and after some coherent transfer time, an IR pulse dumps and localizes an exciton in the bottom QD. While hole trapping is observed in each excitation step, we show that the stability of the localized electron depends on its multiexcitonic character. We present how size and geometry variations of three Ge/Si nanocrystals influence transfer times and thus the efficiency of laser-driven populations of the electron-hole pair states.The BAX protein is a pro-apoptotic member of the Bcl-2 family, which triggers apoptosis by causing permeabilization of the mitochondrial outer membrane. However, the activation mechanism of BAX is far from being understood. Although a few small-molecule BAX activators have been reported in the literature, their crystal structures in complex with BAX have not been resolved. link3 So far, their binding modes were modeled at most by simple molecular docking efforts. Lack of an in-depth understanding of the activation mechanism of BAX hinders the development of more effective BAX activators. In this work, we employed cosolvent molecular dynamics simulation to detect the potential binding sites on the surface of BAX and performed a long-time molecular dynamics simulation (50 μs in total) to derive the possible binding modes of three BAX activators (i.e., BAM7, BTC-8, and BTSA1) reported in the literature. Our results indicate that the trigger, S184, and vMIA sites are the three major binding sites on the full-length BAX structure.

Autoři článku: Grantcote3343 (Harmon Oakley)