Barrbrady0517

Z Iurium Wiki

Verze z 8. 10. 2024, 03:04, kterou vytvořil Barrbrady0517 (diskuse | příspěvky) (Založena nová stránka s textem „Furthermore, ex situ XRD, TEM, and ex situ XPS are applied to reveal the structural evolution and charge compensation mechanism of P2-Na0.67[Mn0.67Ni0.21Li…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Furthermore, ex situ XRD, TEM, and ex situ XPS are applied to reveal the structural evolution and charge compensation mechanism of P2-Na0.67[Mn0.67Ni0.21Li0.06Zn0.06]O2, allowing a deep insight into the great significance of structural stability.In the current information age, the realization of memory devices with energy efficient design, high storage density, nonvolatility, fast access, and low cost is still a great challenge. As a promising technology to meet these stringent requirements, nonvolatile multistates memory (NMSM) has attracted lots of attention over the past years. Owing to the capability to store data in more than a single bit (0 or 1), the storage density is dramatically enhanced without scaling down the memory cell, making memory devices more efficient and less expensive. Multistates in a single cell also provide an unconventional in-memory computing platform beyond the Von Neumann architecture and enable neuromorphic computing with low power consumption. In this review, an in-depth perspective is presented on the recent progress and challenges on the device architectures, material innovation, working mechanisms of various types of NMSMs, including flash, magnetic random-access memory (MRAM), resistive random-access memory (RRAM), ferroelectric random-access memory (FeRAM), and phase-change memory (PCM). The intriguing properties and performance of these NMSMs, which are the key to realizing highly integrated memory hierarchy, are discussed and compared.Multicore iron oxide nanoparticles, also known as colloidal nanocrystal clusters, are magnetic materials with diverse applications in biomedicine and photonics. Here, we examine how both of their characteristic dimensional features, the primary particle and sub-micron colloid diameters, influence their magnetic properties and performance in two different applications. The characterization of these basic size-dependent properties is enabled by a synthetic strategy that provides independent control over both the primary nanocrystal and cluster dimensions. Over a wide range of conditions, electron microscopy and X-ray diffraction reveal that the oriented attachment of smaller nanocrystals results in their crystallographic alignment throughout the entire superstructure. We apply a sulfonated polymer with high charge density to prevent cluster aggregation and conjugate molecular dyes to particle surfaces so as to visualize their collection using handheld magnets. These libraries of colloidal clusters, indexed both by primary nanocrystal dimension (dp) and overall cluster diameter (Dc), form magnetic photonic crystals with relatively weak size-dependent properties. In contrast, their performance as MRI T2 contrast agents is highly sensitive to cluster diameter, not primary particle size, and is optimized for materials of 50 nm diameter (r2 = 364 mM-1 s-1). These results exemplify the relevance of dimensional control in developing applications for these versatile materials.Graphitic carbon nitride (CN) suffers from rapid recombination of photoexcited charges due to the existing highly symmetrical tri-s-triazine ring and long charge diffusion path, resulting in moderate photocatalytic activity. The bridged phenyl embedded in the CN structure was used to reduce the symmetry of the tri-s-triazine ring. In addition, the CN material was constructed with a porous and hollow sphere structure to shorten the diffusion path of charge carriers. Herein, simple thermal polymerization of a trimesic acid-doped melamine-cyanuric acid (MCA) supramolecular was employed to construct phenyl-bridged graphitic carbon nitride (Ph-CN-MCA) with a hollow sphere structure composed of porous nanosheets for visible-light catalytic H2 evolution. The porous and hollow sphere-structured Ph-CN-MCA possessed increased degree of polymerization, more negative conduction band potential, enlarged Brunauer-Emmett-Teller (BET) surface area, and shortened charge diffusion path. In addition, bridged phenyl embedded in the Ph-CN-MCA structure not only accelerated the dissociation of photogenerated carriers but also narrowed the band gap and extended the visible-light absorption. Further, the separated highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Ph-CN-MCA facilitated the spatial dissociation of photogenerated charges, which was also confirmed by theoretical calculations. selleck As a consequence, compared with the reference CN-MA catalyst prepared from melamine, Ph-CN-MCA showed approximately 48.42 times the photocatalytic H2 evolution under visible-light irradiation. The developed synthetic method herein highlights that phenyl-bridged graphitic carbon nitride with a porous and hollow sphere structure could provide an efficient platform to boost the dissociation of photoexcited charge carriers and photocatalytic H2 evolution.The lithium-ion battery (LIB) industry has been in high demand for simple and effective methods to improve the electrochemical performance of LIBs. Here, we treated three different widely studied anode electrodes (i.e., Li4Ti5O12, TiO2, and graphite) under vacuum at 250 °C, and compared their electrochemical performance with and without a 250 °C treatment. Without changing the composition of the fabricated electrodes, all of the 250 °C treated electrodes exhibited enhanced specific capacities, and the lithium-ion diffusion was improved in different degrees. By comparing the results of scanning electron microscopy (SEM) and energy-dispersive spectroscopy of the pristine and 250 °C treated electrodes, the 250 °C treatment improved the distribution of a polyvinylidene difluoride (PVDF) binder in the electrodes, resulting in a higher porosity of the 250 °C treated electrodes. The results of X-ray photoelectron spectrometry and SEM of the cycled electrodes confirmed that a uniform distribution of the PVDF binder from the 250 °C treatment played a positive role in the formation of a solid electrolyte interphase layer, thereby delivering higher capacities and capacity retentions than those of electrodes without heat treatment. The simplicity of this modification method provides considerable potential for building high-performance LIBs at a larger scale.

Autoři článku: Barrbrady0517 (Macias Rivera)